kafka消息积压处理方案

背景:

某值班的一天,生产出现消息积压问题,对此类的问题做出快速应对方案来避免同类型问题,防止影响范围进一步的扩大。

出现消费积压后如何处理:

  1. 首先优先处理消息积压,如果代码逻辑问题,立即修复hotfix上线,并增加消费组,如果发现某节点有问题,立即摘流改节点。
  2. 确认业务影响面,是否更改消费偏移量
  3. 建立业务快速相应机制,增加业务监控告警,系统告警,关注告警
  4. 整理后续公关方案,处理业务影响

考虑范围:

  1. 如果系统持续出现报警,考虑是否代码问题,消息是否出现积压
  2. 如果消费组接收到消息大面积出现延迟,考虑是否出现消息积压
  3. 如果出现消息顺序出现混乱,可能消息投递到不同分区,后续的消息其他分区的先进行了消费,导致了当前分区后进行了消费,出现了消息混乱
  4. 如果某一分区出现消费积压,考虑是否是该分区的节点出现问题,可能是cpu被打满或者是节点网络延迟,及时摘流

消费者消息积压可能原因:

  1. 系统处理能力不足: 系统处理消息的速度跟不上消息产生的速度,导致消息在系统中积累。
  2. 网络延迟: 网络传输速度慢或者网络出现故障,导致消息在传输过程中堆积。
  3. 消费者处理能力不足: 消息队列中的消息产生速度大于消费者处理消息的速度,导致消息在队列中积压。
  4. 消息处理失败: 消息处理过程中出现错误或者异常,导致消息处理失败,未能从消息队列中移除,从而导致消息积压。
  5. 系统负载过高: 系统负载过高导致消息处理速度变慢,无法及时处理消息。
  6. 消息堵塞: 某些消息可能由于特定原因(如消息格式错误、消息体过大等)导致消息队列无法正常处理,从而阻塞了其他消息的处理。
  7. 系统故障: 系统出现故障或者崩溃,导致消息处理中断,未能及时处理消息。消费者出现网络问题,导致消费处理速度降低,出现消息积压

针对消息积压的解决方法可以根据具体情况采取以下措施:

  1. 优化系统性能: 提升系统处理消息的能力,包括优化代码、增加硬件资源、调整系统配置等。
  2. 增加消费者: 增加消费者来加速消息处理速度,确保消息能够及时被消费。
  3. 监控和预警: 建立监控系统,实时监控消息队列的状态,设置阈值并及时发出预警,以便及时处理消息积压问题。
  4. 消息重试机制: 对处理失败的消息实施重试机制,确保消息能够被正确处理。
  5. 消息分流: 根据消息的优先级或者类型进行分流,优先处理重要消息或者紧急消息,避免全部消息集中在同一个队列中。
  6. 定期清理: 定期清理过期或者无效的消息,避免消息队列中堆积过多无用消息。
相关推荐
纪莫5 小时前
Kafka如何保证「消息不丢失」,「顺序传输」,「不重复消费」,以及为什么会发生重平衡(reblanace)
java·分布式·后端·中间件·kafka·队列
想躺平的咸鱼干5 小时前
RabbitMQ 基础
java·分布式·rabbitmq·idea·amqp·消息转换器·交换机模型
poemyang7 小时前
千亿消息“过眼云烟”?Kafka把硬盘当内存用的性能魔法,全靠这一手!
kafka·高并发·pagecache·存储架构·顺序i/o·局部性原理
KaiwuDB7 小时前
KWDB 分布式架构探究——数据分布与特性
数据库·分布式
武子康8 小时前
大数据-75 Kafka 高水位线 HW 与日志末端 LEO 全面解析:副本同步与消费一致性核心
大数据·后端·kafka
华仔啊8 小时前
乐观锁、悲观锁和分布式锁,你用对了吗?
java·分布式
艾希逐月1 天前
分布式唯一 ID 生成方案
分布式
齐木卡卡西在敲代码1 天前
kafka的pull的依据
分布式·kafka
超级迅猛龙1 天前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
lllsure1 天前
RabbitMQ 基础
分布式·rabbitmq