Nvidia/算能 +FPGA+AI大算力边缘计算盒子:隧道和矿井绘图设备

RockMass 正在努力打入采矿业和隧道工程利基市场。

这家位于多伦多的初创公司正在利用 NVIDIA AI 开发一款绘图平台,帮助工程师评估矿井和施工中的隧道稳定性。

目前,作为安全预防措施,地质学家和工程师会站在离岩石五米远的地方,通过目视评估岩层的危险系数。但 RockMass 联合创始人兼首席执行官 Shelby Yee 认为,这并不是确保结果准确性的理想方式。

"通过他们现在用的这种方法评估,整个过程需要花费近 90 分钟,而通过我们的技术只需约 5 分钟即可完成。"Yee 说道。

RockMass 正在借助现场工程师之手,测试其手持设备 Mapper,这款设备的应用领域是采矿、地质勘探和土木工程。该初创公司正在为捕获地质数据的机器人、无人机和手持设备开发 AI 平台。

现在,该初创公司的 Mapper AI 设备提供了一种更安全的方式,让工程师远离可能塌方的隧道;同时也提供了一个更为迅速的数据收集和处理系统。使用这一平台的机器人和无人机可以进入危险系数更高的区域。

RockMass 的客户包括巴西矿业公司 Nexa Resources,后者力图利用 RockMass 的技术提升其自动化程度和安全水平。

为地质技术打造的 AI

多年来,工程师一直在使用传统设备测量岩石表面的角度,例如安装在三脚架上的光学测量设备,类似经纬仪。他们需要找到所谓的薄弱面,以此确定隧道和岩层内的破裂点。

工程师会对岩层表面进行测量,收集用于构建所谓的赤平极射投影网 (stereonet) 的数据。赤平极射投影网可以在二维显示器上呈现出三维形状(如圆石)。

Matt Gubasta(联合创始人兼首席财务官)在安大略省萨德伯里的一个地下测试中心对仪器进行测试。

按照传统方式,工程师需要将从现场获取的数据带回办公室,再将数据传到计算机上,以便构建赤平极射投影网。

该初创公司的技术可以提供一种更为简便的方法。其手持设备配有传感器,可进行此类测量。而其激光雷达传感器和惯性测量单元则能够绘制出岩层中薄弱面的方向。此外,即便在无 GPS、无线通信和光照的地下环境中,该设备也可以正常工作。

通过利用由这些传感器提供的信息,RockMass 的软件能够在几分钟内快速识别出工程师可用的数据。该公司正在致力于帮助现场工程师捕获和处理现场数据。"我们可以实时查看数据。"Yee 说道。

满足高计算要求的 AI

据联合创始人兼首席技术官 Stuart Bourne 称,RockMass 用于收集现场数据的平台对计算能力的要求非常高。该公司的设备依赖于 NVIDIA Jetson 的机器人性能,并由 CUDA、cuDNN 和 TensorRT 软件库提供支持。

"相对于其耗费的能量,Jetson 的计算能力非常之高。"Bourne 如是说。

该初创公司利用了 CUDA 库来实时处理位于运行 NVIDIA GPU 的云实例中的数据,进而为客户处理赤平极射投影网。

"没有谁能像我们一样收集和处理数据,"Yee 表示道,"我们能够实时处理云中数据,这要归功于 GPU 的计算能力。"

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜7 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_8 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习