Python一些小操作

矢量图

python 复制代码
from matplotlib_inline import backend_inline
backend_inline.set_matplotlib_formats('svg')

matplotlib中文问题

python 复制代码
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的"-"负号的乱码问题

可见文章Matplotlib中文乱码解决方案(两种方式)

散点矩阵图

python 复制代码
import pandas as pd
import mglearn
grr = pd.plotting.scatter_matrix(iris_dataframe, # 要绘制散点矩阵图的特征数据
                                 c=y_train, # 指定颜色映射的依据
                                 figsize=(15, 15),
                                 marker='o',
                                 hist_kwds={'bins': 20}, # 直方图分为 20 个区间
                                 s=60,
                                 alpha=.8, # 透明度
                                 cmap=mglearn.cm3) # 设置颜色映射

ROC曲线和AUC值

sklearn.metrics.roc_curve (y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

  • y_true : 数组,形状 = [n_samples],真实标签
  • y_score : 数组,形状 = [n_samples],可以是正类样本的概率值,或置信度分数,或decision_function返回的距离
  • pos_label : 整数或者字符串, 默认None,表示被认为是正类样本的类别
  • sample_weight : 形如 [n_samples]的类数组结构,可不填,表示样本的权重
  • drop_intermediate : 布尔值,默认True,如果设置为True,表示会舍弃一些ROC曲线上不显示的阈值点,这对于计算一个比较轻量的ROC曲线来说非常有用
  • 这个类返回:FPR,Recall以及阈值。

sklearn.metrics.roc_auc_score (y_true, y_score, average='macro', sample_weight=None, max_fpr=None)

输入的参数也比较简单,就是真实标签,和与roc_curve中一致的置信度分数或者概率值。

例1
python 复制代码
import numpy as np
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# 假设有以下真实标签和预测概率
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])

# 计算ROC曲线的点
fpr, tpr, thresholds = roc_curve(y_true, y_scores)

# 计算AUC值
roc_auc = auc(fpr, tpr)

# 画ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()
例2

除了可以用sklearn.metrics.auc这个类来计算AUC面积,也可以使用roc_auc_score这个类。

python 复制代码
# 准备数据
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.svm import SVC
from sklearn.metrics import roc_curve,roc_auc_score

class_1 = 500  #类别1有500个样本。标签为0
class_2 = 50  #类别2只有50个。标签为1
centers = [[0.0, 0.0], [2.0, 2.0]]  #设定两个类别的中心
clusters_std = [1.5, 0.5]  #设定两个类别的标准差,通常来说,样本量比较大的类别会更加松散
X, y = make_blobs(n_samples=[class_1, class_2], centers=centers, cluster_std=clusters_std, random_state=0,
                  shuffle=False)
# X:(550, 2) y:(550,) 有0和1两类

# 训练模型
clf_proba = SVC(kernel="linear", C=1.0, probability=True).fit(X, y)
# 这里的thresholds不是概率值,而是距离值中的阈值,所以它可以大于1,也可以小于0
FPR, recall, thresholds = roc_curve(y, clf_proba.decision_function(X), pos_label=1)
auc_score = roc_auc_score(y, clf_proba.decision_function(X))

# 绘制图形
plt.figure()
plt.plot(FPR, recall, color='red', label='ROC curve (area = %0.2f)' % auc_score)
plt.plot([0, 1], [0, 1], color='black', linestyle='--')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('Recall')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()

可见文章(8) 支持向量机(下)(模型评估指标、ROC曲线)

例3
python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, auc

# 生成带有噪声的数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, 
                           n_informative=10, n_redundant=5, n_clusters_per_class=2, 
                           weights=[0.5, 0.5], flip_y=0.3, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 定义模型
models = {
    'Logistic Regression': LogisticRegression(max_iter=10000),
    'Support Vector Machine': SVC(probability=True),
    'Random Forest': RandomForestClassifier(n_estimators=100)
}

# 画ROC曲线
plt.figure(figsize=(10, 8))
for name, model in models.items():
    model.fit(X_train, y_train)
    y_prob = model.predict_proba(X_test)[:, 1]  # 获取正类的预测概率
    fpr, tpr, _ = roc_curve(y_test, y_prob)
    roc_auc = auc(fpr, tpr)
    
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc_auc:.2f})')

plt.plot([0, 1], [0, 1], 'k--')  # 绘制对角线
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.grid()
plt.show()
相关推荐
不去幼儿园7 分钟前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
Ajiang28247353041 小时前
对于C++中stack和queue的认识以及priority_queue的模拟实现
开发语言·c++
幽兰的天空1 小时前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
Theodore_10224 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
网易独家音乐人Mike Zhou5 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书5 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
----云烟----6 小时前
QT中QString类的各种使用
开发语言·qt
lsx2024066 小时前
SQL SELECT 语句:基础与进阶应用
开发语言
小二·6 小时前
java基础面试题笔记(基础篇)
java·笔记·python
开心工作室_kaic7 小时前
ssm161基于web的资源共享平台的共享与开发+jsp(论文+源码)_kaic
java·开发语言·前端