【中国开源生态再添一员】天工AI开源自家的Skywork

刚刚看到《AI高考作文出圈,网友票选天工AI居首》,没想到在Huggingface中发现了Skywork大模型。天工大模型由昆仑万维自研,是国内首个对标ChatGPT的双千亿级大语言模型,天工大模型通过自然语言与用户进行问答式交互,AI生成能力可满足文案创作、知识问答、代码编程、逻辑推演、数理推算等多元化需求。2023年11月3日,天工大模型通过备案,面向全社会开放服务。

Skywork-MoE 是一个高性能专家混合(MoE)模型,拥有 1460 亿个参数、16 个专家和 220 亿个激活参数。该模型由 Skywork-13B 模型预先存在的密集检查点初始化而成。

引入了两项创新技术:门控对数归一化(Gating Logit Normalization)可增强专家的多样化,自适应辅助损失系数(Adaptive Auxiliary Loss Coefficients)可对辅助损失系数进行特定层调整。

Skywork-MoE 与参数更多或激活参数更多的模型(如 Grok-1、DBRX、Mistral 8*22 和 Deepseek-V2)相比,性能相当或更优。

代码

复制代码
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Skywork/Skywork-MoE-Base", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("Skywork/Skywork-MoE-Base", trust_remote_code=True)

inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
response = model.generate(inputs.input_ids, max_length=128)
print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
"""
陕西的省会是西安。
西安,古称长安、镐京,是陕西省会、副省级市、关中平原城市群核心城市、丝绸之路起点城市、"一带一路"核心区、中国西部地区重要的中心城市,国家重要的科研、教育、工业基地。
西安是中国四大古都之一,联合国科教文组织于1981年确定的"世界历史名城",美媒评选的世界十大古都之一。地处关中平原中部,北濒渭河,南依秦岭,八水润长安。下辖11区2县并代管西
"""

inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
response = model.generate(inputs.input_ids, max_length=128)
print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
"""
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,安徽的省会是合肥,江西的省会是南昌,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,山西的省会是太原,山东的省会是济南,河北的省会是石家庄,辽宁的省会是沈阳,吉林的省会是长春,黑龙江的
"""

vLLM

安装依赖

复制代码
pip3 install xformers vllm-flash-attn 

安装vllm

复制代码
$ git clone https://github.com/SkyworkAI/vllm.git
$ cd vllm

$ MAX_JOBS=8 python3 setup.py install

文本生成

复制代码
from vllm import LLM, SamplingParams

model_path = 'Skywork/Skywork-MoE-Base'
prompts = [
    "The president of the United States is",
    "The capital of France is",
]

sampling_params = SamplingParams(temperature=0.3, max_tokens=256)

llm = LLM(
    model=model_path,
    kv_cache_dtype='auto',
    tensor_parallel_size=8,
    gpu_memory_utilization=0.95, 
    enforce_eager=True,
    trust_remote_code=True,
)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
相关推荐
劲墨难解苍生苦17 分钟前
spring ai alibaba mcp 开发demo
java·人工智能
程序员霸哥哥33 分钟前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
草莓熊Lotso1 小时前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc
IT_陈寒1 小时前
Vue 3性能优化实战:7个关键技巧让我的应用加载速度提升50%
前端·人工智能·后端
【赫兹威客】浩哥1 小时前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
RPA机器人就用八爪鱼1 小时前
RPA:企业数字化转型的高效自动化利器
人工智能
程序员-小李1 小时前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
掘金安东尼1 小时前
AI 生成代码,从 Copilot 到 Claude Code 的全景测评
人工智能
说私域1 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序
喜欢吃豆2 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp