牛客热题:矩阵最长递增路径

📟作者主页:慢热的陕西人

🌴专栏链接:力扣刷题日记

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

文章目录

牛客热题:矩阵最长递增路径

题目链接

矩阵最长递增路径_牛客题霸_牛客网 (nowcoder.com)

方法一:DFS

思路

dfs:以(x, y)为起点进行递归:

​ 对于每个(x, y)来说,遍历它上下左右四个坐标,查看是否越界或者满足递增的要求;

​ 若是满足要求就继续递归满足要求的点

slove: 两重循环遍历矩阵中所有的点

代码

cpp 复制代码
void dfs(vector<vector<int>>& matrix, vector<vector<int>>& st, int count, int x, int y, int& res)
    {
        array<int, 4> dx = {-1, 0, 1, 0};
        array<int, 4> dy = {0, 1, 0, -1};
        int n = st.size();
        int m = st[0].size();

        for(int i = 0; i < 4; ++i)
        {
            int X = x + dx[i], Y = y + dy[i];
            if(X < 0 || X >= n || Y < 0 || Y >= m)
            continue;

            if(st[X][Y] == 0 && matrix[X][Y] > matrix[x][y])
            {
                st[X][Y] = 1;
                dfs(matrix, st, count + 1, X, Y, res);
                st[X][Y] = 0;
            }
        }

        res = max(res, count);
    }
    
    int solve(vector<vector<int> >& matrix) 
    {   
        int n = matrix.size();
        int m = matrix[0].size();
        int res = 1;
        vector<vector<int>> st(n, vector<int>(m));
        for(int i = 0; i < n; ++i)
            for(int j = 0; j < m; ++j)
                dfs(matrix, st, 1, i, j, res);

        return res;
    }

复杂度

时间复杂度:

​ dfs的时间复杂度为O(m * n), 主函数调用了m * n次,所以总体的时间复杂度是O( ( m ∗ n ) 2 (m * n) ^ 2 (m∗n)2)

空间复杂度:

创建了一个和原矩阵空间大小相同的矩阵用于判断当前的左边是否被递归过,以及一些变量。

​ 所以总体上来说空间复杂度:O(n * m);

方法二:优化--- 一个位置只递归一次

思路

  1. 动态规划缓存 : dp 矩阵用来缓存已经计算过的路径长度,避免重复计算。
  2. 减少递归调用: 通过在每个位置初始化时只调用一次 DFS,减少了不必要的递归调用。
  3. 简化函数参数 : 去掉了 st 矩阵和 count 参数,将 dp 矩阵用作缓存,count 的功能由 dp[x][y] 代替。

代码

cpp 复制代码
class Solution {
public:
    void dfs(const vector<vector<int>>& matrix, vector<vector<int>>& dp, int x, int y, int& res) {
        array<int, 4> dx = {-1, 0, 1, 0};
        array<int, 4> dy = {0, 1, 0, -1};
        int n = matrix.size();
        int m = matrix[0].size();

        for (int i = 0; i < 4; ++i) {
            int X = x + dx[i], Y = y + dy[i];
            if (X < 0 || X >= n || Y < 0 || Y >= m || matrix[X][Y] <= matrix[x][y]) {
                continue;
            }
            if (dp[X][Y] == 0) {
                dfs(matrix, dp, X, Y, res);
            }
            dp[x][y] = max(dp[x][y], 1 + dp[X][Y]);
        }

        res = max(res, dp[x][y]);
    }

    int solve(vector<vector<int>>& matrix) {
        int n = matrix.size();
        if (n == 0) return 0;
        int m = matrix[0].size();
        vector<vector<int>> dp(n, vector<int>(m, 0));
        int res = 1;

        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (dp[i][j] == 0) {
                    dp[i][j] = 1;
                    dfs(matrix, dp, i, j, res);
                }
            }
        }

        return res;
    }
};

复杂度

时间复杂度:

​ 相当于遍历一遍对应的矩阵O(n * m)

空间复杂度:

创建了一个和原矩阵同等空间的dp数组,则空间复杂度为O(n * m)

相关推荐
luofeiju4 小时前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio10 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl17 小时前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl
盛寒1 天前
矩阵的定义和运算 线性代数
线性代数
盛寒1 天前
初等变换 线性代数
线性代数
叶子爱分享2 天前
浅谈「线性代数的本质」 - 系列合集
线性代数
luofeiju2 天前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
好开心啊没烦恼2 天前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析
引量AI11 天前
TikTok 矩阵如何快速涨粉
大数据·人工智能·矩阵·tiktok矩阵·海外社媒
Ven%12 天前
矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
人工智能·pytorch·深度学习·线性代数·矩阵·tensor·张量