牛客热题:矩阵最长递增路径

📟作者主页:慢热的陕西人

🌴专栏链接:力扣刷题日记

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

文章目录

牛客热题:矩阵最长递增路径

题目链接

矩阵最长递增路径_牛客题霸_牛客网 (nowcoder.com)

方法一:DFS

思路

dfs:以(x, y)为起点进行递归:

​ 对于每个(x, y)来说,遍历它上下左右四个坐标,查看是否越界或者满足递增的要求;

​ 若是满足要求就继续递归满足要求的点

slove: 两重循环遍历矩阵中所有的点

代码

cpp 复制代码
void dfs(vector<vector<int>>& matrix, vector<vector<int>>& st, int count, int x, int y, int& res)
    {
        array<int, 4> dx = {-1, 0, 1, 0};
        array<int, 4> dy = {0, 1, 0, -1};
        int n = st.size();
        int m = st[0].size();

        for(int i = 0; i < 4; ++i)
        {
            int X = x + dx[i], Y = y + dy[i];
            if(X < 0 || X >= n || Y < 0 || Y >= m)
            continue;

            if(st[X][Y] == 0 && matrix[X][Y] > matrix[x][y])
            {
                st[X][Y] = 1;
                dfs(matrix, st, count + 1, X, Y, res);
                st[X][Y] = 0;
            }
        }

        res = max(res, count);
    }
    
    int solve(vector<vector<int> >& matrix) 
    {   
        int n = matrix.size();
        int m = matrix[0].size();
        int res = 1;
        vector<vector<int>> st(n, vector<int>(m));
        for(int i = 0; i < n; ++i)
            for(int j = 0; j < m; ++j)
                dfs(matrix, st, 1, i, j, res);

        return res;
    }

复杂度

时间复杂度:

​ dfs的时间复杂度为O(m * n), 主函数调用了m * n次,所以总体的时间复杂度是O( ( m ∗ n ) 2 (m * n) ^ 2 (m∗n)2)

空间复杂度:

创建了一个和原矩阵空间大小相同的矩阵用于判断当前的左边是否被递归过,以及一些变量。

​ 所以总体上来说空间复杂度:O(n * m);

方法二:优化--- 一个位置只递归一次

思路

  1. 动态规划缓存 : dp 矩阵用来缓存已经计算过的路径长度,避免重复计算。
  2. 减少递归调用: 通过在每个位置初始化时只调用一次 DFS,减少了不必要的递归调用。
  3. 简化函数参数 : 去掉了 st 矩阵和 count 参数,将 dp 矩阵用作缓存,count 的功能由 dp[x][y] 代替。

代码

cpp 复制代码
class Solution {
public:
    void dfs(const vector<vector<int>>& matrix, vector<vector<int>>& dp, int x, int y, int& res) {
        array<int, 4> dx = {-1, 0, 1, 0};
        array<int, 4> dy = {0, 1, 0, -1};
        int n = matrix.size();
        int m = matrix[0].size();

        for (int i = 0; i < 4; ++i) {
            int X = x + dx[i], Y = y + dy[i];
            if (X < 0 || X >= n || Y < 0 || Y >= m || matrix[X][Y] <= matrix[x][y]) {
                continue;
            }
            if (dp[X][Y] == 0) {
                dfs(matrix, dp, X, Y, res);
            }
            dp[x][y] = max(dp[x][y], 1 + dp[X][Y]);
        }

        res = max(res, dp[x][y]);
    }

    int solve(vector<vector<int>>& matrix) {
        int n = matrix.size();
        if (n == 0) return 0;
        int m = matrix[0].size();
        vector<vector<int>> dp(n, vector<int>(m, 0));
        int res = 1;

        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (dp[i][j] == 0) {
                    dp[i][j] = 1;
                    dfs(matrix, dp, i, j, res);
                }
            }
        }

        return res;
    }
};

复杂度

时间复杂度:

​ 相当于遍历一遍对应的矩阵O(n * m)

空间复杂度:

创建了一个和原矩阵同等空间的dp数组,则空间复杂度为O(n * m)

相关推荐
BlackPercy8 小时前
【线性代数】基础版本的高斯消元法
线性代数·julia
金融OG14 小时前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
木与长清17 小时前
利用MetaNeighbor验证重复性和跨物种分群
矩阵·数据分析·r语言
肖田变强不变秃1 天前
C++实现矩阵Matrix类 实现基本运算
开发语言·c++·matlab·矩阵·有限元·ansys
洛水微寒1 天前
多张图片读入后组成一个矩阵。怎么读取图片,可以让其读入的形式是:ndarray(a,b,c)分别的含义:a为多少张图片,b*c为图片大小
线性代数·矩阵
金融OG1 天前
5. 马科维茨资产组合模型+AI金融智能体(qwen-max)识别政策意图方案(理论+Python实战)
大数据·人工智能·python·线性代数·机器学习·金融
fchampion2 天前
leetcode hot 100 -搜索二维矩阵
算法·leetcode·矩阵
golitter.3 天前
使用numpy求解线性代数相关问题
线性代数·numpy
夏尔Gaesar3 天前
pcm | Parity Check Matrix(奇偶校验矩阵)
算法·矩阵·pcm
AIzealot无3 天前
力扣hot100之螺旋矩阵
算法·leetcode·矩阵