深度学习中,sigmoid和softmax生成注意力权重的区别是什么?

在深度学习中,sigmoid和softmax是两种常用的激活函数,它们生成注意力权重时有以下区别:

Sigmoid

  1. 输出范围:sigmoid函数将输入压缩到[0, 1]范围内。
  2. 独立处理:每个输入单元的输出独立于其他单元,输入与输出之间存在一一对应的关系。
  3. 应用场景:适用于生成独立注意力权重的场景,即每个权重的大小不受其他权重的影响。例如,在某些注意力机制中,每个元素的注意力权重可以单独生成。

Softmax

  1. 输出范围:softmax函数将输入转换成概率分布,输出的各个元素范围在(0, 1)之间,并且总和为1。
  2. 相互依赖:输出是所有输入的函数,即一个输入的变化会影响所有输出单元的值。softmax会使输出具有竞争关系,较大的输入值会有较大的输出概率,而其他值的输出概率会相应减小。
  3. 应用场景:适用于生成相对注意力权重的场景,例如在机器翻译中,softmax可以用于计算每个单词的注意力权重,使得总的注意力权重和为1,以突出某些关键单词。

对比

  • 独立性:sigmoid生成的注意力权重是独立的,而softmax生成的注意力权重是相互依赖的。
  • 归一化:softmax生成的权重会自动归一化为1,而sigmoid则不会。
  • 适用场景:sigmoid更适合于需要独立考虑每个输入的重要性的情况,而softmax更适合于需要分配总注意力到不同输入的情况。

具体使用哪个函数,取决于你的模型和任务需求。如果需要生成独立的注意力权重,可以使用sigmoid;如果需要分配整体注意力到各个输入,使用softmax更为合适。

相关推荐
OAFD.2 分钟前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
SHIPKING3932 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.8242 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
CareyWYR3 小时前
每周AI论文速递(250818-250822)
人工智能
门思科技3 小时前
LoRaWAN 的网络拓扑全解析:架构、原理与应用实践
服务器·网络·人工智能·科技·物联网·架构
兔子的倔强3 小时前
Transformer在文本、图像和点云数据中的应用——经典工作梳理
人工智能·深度学习·transformer
lxmyzzs4 小时前
【图像算法 - 21】慧眼识虫:基于深度学习与OpenCV的农田害虫智能识别系统
人工智能·深度学习·opencv·算法·yolo·目标检测·计算机视觉
Gloria_niki4 小时前
机器学习之K 均值聚类算法
人工智能·机器学习
AI人工智能+5 小时前
表格识别技术:通过图像处理与深度学习,将非结构化表格转化为可编辑结构化数据,推动智能化发展
人工智能·深度学习·ocr·表格识别
深圳多奥智能一卡(码、脸)通系统5 小时前
智能二维码QR\刷IC卡\人脸AI识别梯控系统功能设计需基于模块化架构,整合物联网、生物识别、权限控制等技术,以下是多奥分层次的系统设计框架
人工智能·门禁·电梯门禁·二维码梯控·梯控·电梯