【文献阅读】基于高阶矩的波形分类方法

文章目录

基本信息

【2017】rse

  • Moritz, Bruggisser, Andreas, et al. Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification[J]. Remote Sensing of Environment, 2017,196: 28-41.
缩写
ALS airborne laser scanning 机载激光扫描
FW Full-waveform 全波形
SND skew normal distribution 偏正态分布
DBH diameter at breast height 胸径
SVM support vector machine 支持向量机

本文根据ALS数据的全波形信息,基于SND模型,提取回波信号的高阶矩,实现了对不同树种的波形分类。

SND及其统计特征

SND函数由正态分布的密度函数 ϕ ( x ) \phi(x) ϕ(x)和分布函数 Φ ( x ) \Phi(x) Φ(x)混合而成的一种函数,可以表示为

f ( x ∣ α , ω ) = 2 ϕ ( x ) Φ ( α x ) f(x|\alpha, \omega)=2\phi(x)\Phi(\alpha x) f(x∣α,ω)=2ϕ(x)Φ(αx)

其中

ϕ ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) Φ ( x ) = ∫ − ∞ x ϕ ( x ) d x = 1 2 ( 1 + erf ⁡ x 2 ) \begin{aligned} \phi(x)&=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\\ \Phi(x)&=\int^x_{-\infty}\phi(x)\text{d}x=\frac{1}{2}(1+\operatorname{erf}\frac{x}{\sqrt{2}}) \end{aligned} ϕ(x)Φ(x)=2π 1exp(−2x2)=∫−∞xϕ(x)dx=21(1+erf2 x)

erf ⁡ \operatorname{erf} erf是误差函数。

所以, f ( x ) f(x) f(x)的完整形式为

f ( x ∣ A , s , α , ω ) = A ω exp ⁡ ( − ( x − s ω ) 2 2 ) 2 ϕ ( x ) ( 1 + erf ⁡ α ( x − s ω ) 2 ) f(x|A, s, \alpha, \omega)=\frac{A}{\omega}\exp(-\frac{(\frac{x-s}{\omega})^2}{2})2\phi(x)(1+\operatorname{erf}\frac{\alpha(\frac{x-s}{\omega})}{\sqrt{2}}) f(x∣A,s,α,ω)=ωAexp(−2(ωx−s)2)2ϕ(x)(1+erf2 α(ωx−s))

记 δ = α 1 + α 2 \delta=\frac{\alpha}{1+\alpha^2} δ=1+α2α,则其偏度和峰度为

skew = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 3 , kurt = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 4 \text{skew}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^3,\quad \text{kurt}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^4\\ skew=24−π1−2δ2/π2δ2/π 3,kurt=24−π1−2δ2/π2δ2/π 4

分类

本文的目的是对下表中的树木进行分类,分析发现,不同树种的回波偏度有着显著差异,说明偏度可以作为区分树种的重要特征,而峰度则不具备这种特性。

物种名称 数目 类型 DBH[cm] 高度[m]
Silver fir (Abies alba) 67 针叶 54.54 36.02
Norway spruce (Picea abies) 32 针叶 65.57 34.73
Norway maple (Acer platanoides) 35 落叶 31.38 28.62
Sycamore maple (Acer pseudoplatanus) 145 落叶 35.00 31.47
European beech (Fagus sylvatica) 396 落叶 46.35 30.87
European ash (Fraxinus excelsior) 208 落叶 42.64 32.19
Large-leaved lime (Tilia platyphyllos) 86 落叶 30.86 29.09
总计 969
  • Conifer 针叶
  • Deciduous 落叶

文中使用了SVM分类器,具体使用的是LIBSVM提供的Matlab接口。结果标明,在加入峰度和偏度判据之后,其PA和UA均有所提高。

相关推荐
每天都要写算法(努力版)1 分钟前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
vocal20 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua21 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter29 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus41 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能1 小时前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae