【文献阅读】基于高阶矩的波形分类方法

文章目录

基本信息

【2017】rse

  • Moritz, Bruggisser, Andreas, et al. Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification[J]. Remote Sensing of Environment, 2017,196: 28-41.
缩写
ALS airborne laser scanning 机载激光扫描
FW Full-waveform 全波形
SND skew normal distribution 偏正态分布
DBH diameter at breast height 胸径
SVM support vector machine 支持向量机

本文根据ALS数据的全波形信息,基于SND模型,提取回波信号的高阶矩,实现了对不同树种的波形分类。

SND及其统计特征

SND函数由正态分布的密度函数 ϕ ( x ) \phi(x) ϕ(x)和分布函数 Φ ( x ) \Phi(x) Φ(x)混合而成的一种函数,可以表示为

f ( x ∣ α , ω ) = 2 ϕ ( x ) Φ ( α x ) f(x|\alpha, \omega)=2\phi(x)\Phi(\alpha x) f(x∣α,ω)=2ϕ(x)Φ(αx)

其中

ϕ ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) Φ ( x ) = ∫ − ∞ x ϕ ( x ) d x = 1 2 ( 1 + erf ⁡ x 2 ) \begin{aligned} \phi(x)&=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\\ \Phi(x)&=\int^x_{-\infty}\phi(x)\text{d}x=\frac{1}{2}(1+\operatorname{erf}\frac{x}{\sqrt{2}}) \end{aligned} ϕ(x)Φ(x)=2π 1exp(−2x2)=∫−∞xϕ(x)dx=21(1+erf2 x)

erf ⁡ \operatorname{erf} erf是误差函数。

所以, f ( x ) f(x) f(x)的完整形式为

f ( x ∣ A , s , α , ω ) = A ω exp ⁡ ( − ( x − s ω ) 2 2 ) 2 ϕ ( x ) ( 1 + erf ⁡ α ( x − s ω ) 2 ) f(x|A, s, \alpha, \omega)=\frac{A}{\omega}\exp(-\frac{(\frac{x-s}{\omega})^2}{2})2\phi(x)(1+\operatorname{erf}\frac{\alpha(\frac{x-s}{\omega})}{\sqrt{2}}) f(x∣A,s,α,ω)=ωAexp(−2(ωx−s)2)2ϕ(x)(1+erf2 α(ωx−s))

记 δ = α 1 + α 2 \delta=\frac{\alpha}{1+\alpha^2} δ=1+α2α,则其偏度和峰度为

skew = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 3 , kurt = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 4 \text{skew}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^3,\quad \text{kurt}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^4\\ skew=24−π1−2δ2/π2δ2/π 3,kurt=24−π1−2δ2/π2δ2/π 4

分类

本文的目的是对下表中的树木进行分类,分析发现,不同树种的回波偏度有着显著差异,说明偏度可以作为区分树种的重要特征,而峰度则不具备这种特性。

物种名称 数目 类型 DBH[cm] 高度[m]
Silver fir (Abies alba) 67 针叶 54.54 36.02
Norway spruce (Picea abies) 32 针叶 65.57 34.73
Norway maple (Acer platanoides) 35 落叶 31.38 28.62
Sycamore maple (Acer pseudoplatanus) 145 落叶 35.00 31.47
European beech (Fagus sylvatica) 396 落叶 46.35 30.87
European ash (Fraxinus excelsior) 208 落叶 42.64 32.19
Large-leaved lime (Tilia platyphyllos) 86 落叶 30.86 29.09
总计 969
  • Conifer 针叶
  • Deciduous 落叶

文中使用了SVM分类器,具体使用的是LIBSVM提供的Matlab接口。结果标明,在加入峰度和偏度判据之后,其PA和UA均有所提高。

相关推荐
飞哥数智坊10 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三10 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯11 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet13 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar14 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai14 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear17 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp