【文献阅读】基于高阶矩的波形分类方法

文章目录

基本信息

【2017】rse

  • Moritz, Bruggisser, Andreas, et al. Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification[J]. Remote Sensing of Environment, 2017,196: 28-41.
缩写
ALS airborne laser scanning 机载激光扫描
FW Full-waveform 全波形
SND skew normal distribution 偏正态分布
DBH diameter at breast height 胸径
SVM support vector machine 支持向量机

本文根据ALS数据的全波形信息,基于SND模型,提取回波信号的高阶矩,实现了对不同树种的波形分类。

SND及其统计特征

SND函数由正态分布的密度函数 ϕ ( x ) \phi(x) ϕ(x)和分布函数 Φ ( x ) \Phi(x) Φ(x)混合而成的一种函数,可以表示为

f ( x ∣ α , ω ) = 2 ϕ ( x ) Φ ( α x ) f(x|\alpha, \omega)=2\phi(x)\Phi(\alpha x) f(x∣α,ω)=2ϕ(x)Φ(αx)

其中

ϕ ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) Φ ( x ) = ∫ − ∞ x ϕ ( x ) d x = 1 2 ( 1 + erf ⁡ x 2 ) \begin{aligned} \phi(x)&=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})\\ \Phi(x)&=\int^x_{-\infty}\phi(x)\text{d}x=\frac{1}{2}(1+\operatorname{erf}\frac{x}{\sqrt{2}}) \end{aligned} ϕ(x)Φ(x)=2π 1exp(−2x2)=∫−∞xϕ(x)dx=21(1+erf2 x)

erf ⁡ \operatorname{erf} erf是误差函数。

所以, f ( x ) f(x) f(x)的完整形式为

f ( x ∣ A , s , α , ω ) = A ω exp ⁡ ( − ( x − s ω ) 2 2 ) 2 ϕ ( x ) ( 1 + erf ⁡ α ( x − s ω ) 2 ) f(x|A, s, \alpha, \omega)=\frac{A}{\omega}\exp(-\frac{(\frac{x-s}{\omega})^2}{2})2\phi(x)(1+\operatorname{erf}\frac{\alpha(\frac{x-s}{\omega})}{\sqrt{2}}) f(x∣A,s,α,ω)=ωAexp(−2(ωx−s)2)2ϕ(x)(1+erf2 α(ωx−s))

记 δ = α 1 + α 2 \delta=\frac{\alpha}{1+\alpha^2} δ=1+α2α,则其偏度和峰度为

skew = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 3 , kurt = 4 − π 2 2 δ 2 / π 1 − 2 δ 2 / π 4 \text{skew}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^3,\quad \text{kurt}=\frac{4-\pi}{2}\sqrt{\frac{2\delta^2/\pi}{1-2\delta^2/\pi}}^4\\ skew=24−π1−2δ2/π2δ2/π 3,kurt=24−π1−2δ2/π2δ2/π 4

分类

本文的目的是对下表中的树木进行分类,分析发现,不同树种的回波偏度有着显著差异,说明偏度可以作为区分树种的重要特征,而峰度则不具备这种特性。

物种名称 数目 类型 DBH[cm] 高度[m]
Silver fir (Abies alba) 67 针叶 54.54 36.02
Norway spruce (Picea abies) 32 针叶 65.57 34.73
Norway maple (Acer platanoides) 35 落叶 31.38 28.62
Sycamore maple (Acer pseudoplatanus) 145 落叶 35.00 31.47
European beech (Fagus sylvatica) 396 落叶 46.35 30.87
European ash (Fraxinus excelsior) 208 落叶 42.64 32.19
Large-leaved lime (Tilia platyphyllos) 86 落叶 30.86 29.09
总计 969
  • Conifer 针叶
  • Deciduous 落叶

文中使用了SVM分类器,具体使用的是LIBSVM提供的Matlab接口。结果标明,在加入峰度和偏度判据之后,其PA和UA均有所提高。

相关推荐
张小凡vip1 分钟前
OpenClaw简介--windows系统安装OpenClaw
人工智能·windows·openclaw
HaiLang_IT17 分钟前
计算机科学与技术专业优质选题推荐 选题合集 | 人工智能/自然语言处理/计算机视觉
人工智能·自然语言处理·课程设计
Rolei_zl22 分钟前
AIGC(生成式AI)试用 46 -- AI与软件开发过程1
人工智能·aigc
波动几何28 分钟前
信息图风格提示词方案
人工智能
tq108632 分钟前
多智能体协作问题和解决方案
人工智能
gorgeous(๑>؂<๑)35 分钟前
【ICLR26-Oral Paper】透过对比的视角:视觉语言模型中的自改进视觉推理
人工智能·算法·语言模型·自然语言处理
新缸中之脑35 分钟前
AI代理的两种沙盒架构
人工智能·架构
HyperAI超神经37 分钟前
视觉真实之外:清华WorldArena全新评测体系揭示具身世界模型的能力鸿沟
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人
AC赳赳老秦39 分钟前
软件组件自动化的革命:DeepSeek 引领高效开发新时代
运维·人工智能·算法·云原生·maven·devops·deepseek
量子-Alex39 分钟前
【大模型思维链】Tree of Thoughts: Deliberate Problem Solving with Large Language Models
人工智能·语言模型·自然语言处理