02 Pytorch_NLP

1. N-gram

n决定关联信息

2. TF____IDF

TF:词频

IDF:逆向序列

假如:TF * IDF 就是当前的文件,那么乘积反而更大!

因为它只出现在 特定的文章中!

TF-IDF 简介

TF-IDF(Term Frequency-Inverse Document Frequency)是一种统计方法,用于评估一个词在文档集合中的重要程度。它由两部分组成:

  • TF(词频):一个词在文档中出现的次数。
  • IDF(逆文档频率):该词在整个语料库中出现的频率的逆。

代码示例

下面的代码展示了如何计算一个文本语料库中每个词的TF-IDF值,并将每个句子编码为一个包含这些TF-IDF值的向量。

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 示例文档
documents = [
    "The cat sat on the mat",
    "The dog sat on the log",
    "The cat chased the mouse",
    "The dog chased the cat"
]

# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 对文档进行TF-IDF转换
tfidf_matrix = vectorizer.fit_transform(documents)

# 获取词汇表
feature_names = vectorizer.get_feature_names_out()

# 打印TF-IDF矩阵
print(tfidf_matrix.toarray())

# 打印词汇表
print(feature_names)

代码解释

  1. 创建示例文档:包含四个简单的句子。
  2. 创建TF-IDF向量化器 :使用 TfidfVectorizer 类。
  3. 进行TF-IDF转换 :将文档列表传递给向量化器的 fit_transform 方法,生成TF-IDF矩阵。
  4. 获取词汇表 :使用 get_feature_names_out 方法获取词汇表中的词。
  5. 打印TF-IDF矩阵词汇表:分别打印TF-IDF矩阵和词汇表。

示例输出

假设上述代码的输出如下:

python 复制代码
[[0.        0.        0.        0.469417   0.580285 0.469417   0.469417   0.        0.        0.        0.        ]
 [0.        0.        0.        0.469417   0.580285 0.469417   0.        0.469417   0.        0.        0.        ]
 [0.469417   0.469417   0.        0.        0.        0.        0.469417   0.        0.        0.580285 0.469417   ]
 [0.469417   0.469417   0.469417   0.        0.        0.        0.469417   0.        0.580285 0.        0.        ]]
['cat' 'chased' 'dog' 'log' 'mat' 'mouse' 'on' 'sat' 'the']

每一行对应一个文档,每一列对应一个词汇表中的词。值是该词在该文档中的TF-IDF值。

解释图片中的步骤

  1. 切分所有的词,记词的数量为 n

    • 对文档进行词切分,统计每个词的数量,得到词汇表大小 n。
  2. 计算每个词的 TF-IDF 值

    • 使用上面代码中的 TfidfVectorizer 计算每个词的 TF-IDF 值。
  3. 对每个句子进行编码

    • 使用 TF-IDF 值将每个句子编码为一个向量,向量的维度为 n。如果一个词在句子中出现,其值为该词的 TF-IDF 值,如果未出现则值为 0。
  4. 降维操作

    • 由于 n 可能很大,可以使用 PCA、SVD、LDA 等方法对向量进行降维。

这个过程可以将文档转化为向量表示,便于后续的机器学习和数据分析。

3.Word2Vec算法简

相关推荐
化作星辰12 分钟前
深度学习_三层神经网络传播案例(L0->L1->L2)
人工智能·深度学习·神经网络
机器之心16 分钟前
首个完整开源的生成式推荐框架MiniOneRec,轻量复现工业级OneRec!
人工智能·openai
_codemonster42 分钟前
深度学习实战(基于pytroch)系列(十五)模型构造
人工智能·深度学习
海域云赵从友1 小时前
2025年印尼服务器选型指南:跨境业务落地的合规与性能双解
人工智能·git·github
用户5191495848452 小时前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI2 小时前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手
AI街潜水的八角2 小时前
深度学习杂草分割系统1:数据集说明(含下载链接)
人工智能·深度学习·分类
TG:@yunlaoda360 云老大2 小时前
谷歌云发布 Document AI Workbench 最新功能:自定义文档拆分器实现复杂文档处理自动化
运维·人工智能·自动化·googlecloud
苍何2 小时前
国内也有 GPT 质感的 App 了,阿里做到了。
人工智能
美团技术团队3 小时前
美团 LongCat 团队发布全模态一站式评测基准UNO-Bench
人工智能