02 Pytorch_NLP

1. N-gram

n决定关联信息

2. TF____IDF

TF:词频

IDF:逆向序列

假如:TF * IDF 就是当前的文件,那么乘积反而更大!

因为它只出现在 特定的文章中!

TF-IDF 简介

TF-IDF(Term Frequency-Inverse Document Frequency)是一种统计方法,用于评估一个词在文档集合中的重要程度。它由两部分组成:

  • TF(词频):一个词在文档中出现的次数。
  • IDF(逆文档频率):该词在整个语料库中出现的频率的逆。

代码示例

下面的代码展示了如何计算一个文本语料库中每个词的TF-IDF值,并将每个句子编码为一个包含这些TF-IDF值的向量。

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 示例文档
documents = [
    "The cat sat on the mat",
    "The dog sat on the log",
    "The cat chased the mouse",
    "The dog chased the cat"
]

# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 对文档进行TF-IDF转换
tfidf_matrix = vectorizer.fit_transform(documents)

# 获取词汇表
feature_names = vectorizer.get_feature_names_out()

# 打印TF-IDF矩阵
print(tfidf_matrix.toarray())

# 打印词汇表
print(feature_names)

代码解释

  1. 创建示例文档:包含四个简单的句子。
  2. 创建TF-IDF向量化器 :使用 TfidfVectorizer 类。
  3. 进行TF-IDF转换 :将文档列表传递给向量化器的 fit_transform 方法,生成TF-IDF矩阵。
  4. 获取词汇表 :使用 get_feature_names_out 方法获取词汇表中的词。
  5. 打印TF-IDF矩阵词汇表:分别打印TF-IDF矩阵和词汇表。

示例输出

假设上述代码的输出如下:

python 复制代码
[[0.        0.        0.        0.469417   0.580285 0.469417   0.469417   0.        0.        0.        0.        ]
 [0.        0.        0.        0.469417   0.580285 0.469417   0.        0.469417   0.        0.        0.        ]
 [0.469417   0.469417   0.        0.        0.        0.        0.469417   0.        0.        0.580285 0.469417   ]
 [0.469417   0.469417   0.469417   0.        0.        0.        0.469417   0.        0.580285 0.        0.        ]]
['cat' 'chased' 'dog' 'log' 'mat' 'mouse' 'on' 'sat' 'the']

每一行对应一个文档,每一列对应一个词汇表中的词。值是该词在该文档中的TF-IDF值。

解释图片中的步骤

  1. 切分所有的词,记词的数量为 n

    • 对文档进行词切分,统计每个词的数量,得到词汇表大小 n。
  2. 计算每个词的 TF-IDF 值

    • 使用上面代码中的 TfidfVectorizer 计算每个词的 TF-IDF 值。
  3. 对每个句子进行编码

    • 使用 TF-IDF 值将每个句子编码为一个向量,向量的维度为 n。如果一个词在句子中出现,其值为该词的 TF-IDF 值,如果未出现则值为 0。
  4. 降维操作

    • 由于 n 可能很大,可以使用 PCA、SVD、LDA 等方法对向量进行降维。

这个过程可以将文档转化为向量表示,便于后续的机器学习和数据分析。

3.Word2Vec算法简

相关推荐
大写-凌祁2 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热2 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生2 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn2 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威3 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖4 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站4 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI4 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技4 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U4 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm