调用百度API实现图像多主体检测

目录

1. 作者介绍

邓富贵,男,西安工程大学电子信息学院,2023级研究生

研究方向:机器视觉与人工智能

电子邮件:dengfugui226@163.com

吴天禧,女,西安工程大学电子信息学院,2023级研究生,张宏伟人工智能课题组

研究方向:模式识别与智能系统

电子邮件:230411046@stu.xpu.edu.cn

2.百度API介绍与获取

2.1 API介绍

应用程序编程接口(英语:Application Programming Interface,简称:API),是一些预先定义的函数。

目的:让应用程序开发人员得以调用一组例程功能,而无须考虑其底层的源代码为何、或理解其内部工作机制的细节。

图像多主体检测API:检测出图片中多个主体的坐标位置,并给出主体的分类标签和标签的置信度得分,共计16大类,可用于图片打标、裁剪出对应主体进行二次开发。其效果图如下。

2.2 注册账号并获取API Key

(1)注册百度智能云账号,进入官网首页,搜索图像主体检测,点击

(2)跳转后点击查看详情

(3)跳转后点击立即使用

(4)跳转后点击应用列表,接着点击创建应用,获取你的API Key 和 Secret Key

3.完整实验代码,测试结果

3.1 调用API

python 复制代码
import requests
import base64
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from translate import Translator
API_KEY = "你的API_KEY"
SECRET_KEY = "你的SECRET_KEY"

def get_access_token():
    """
    使用 AK,SK 生成鉴权签名(Access Token)
    :return: access_token,或是None(如果错误)
    """
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
    return str(requests.post(url, params=params).json().get("access_token"))

request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/multi_object_detect"
# 二进制方式打开图片文件
f = open(r'C:\Users\86185\1.jpg', 'rb')
img = base64.b64encode(f.read())
params = {"image":img}
access_token = get_access_token()
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
    print (response.json())
    print(type(response.json()))

3.2框出主体部分,并标注标签和置信度

python 复制代码
def cv2ImgAddText(img, text, left, top, textColor, textSize=20):
    if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(img)
    # 字体的格式
    fontStyle = ImageFont.truetype(
        "STSONG.TTF", textSize, encoding="utf-8")
    # 绘制文本
    draw.text((left, top), text, textColor, font=fontStyle)
    # 转换回OpenCV格式
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

def draw_bounding_boxes(image_path, detections):
    """
    在图片上绘制边界框,基于检测结果。
    :param image_path: 图片文件的路径。
    :param detections: 检测结果列表,每个结果包含分数、名称和位置信息。
    """
    # 加载图片
    image = cv2.imread(image_path)
    if image is None:
        print("未找到图片")
        return
    # 遍历检测结果并绘制
    for detection in detections['result']:
        score = detection['score']  # 置信度
        name = detection['name']    # 名称
        top = detection['location']['top']  # 上边界
        left = detection['location']['left']  # 左边界
        width = detection['location']['width']  # 宽度
        height = detection['location']['height']  # 高度
       
        # 在检测到的主体周围绘制红色矩形框
        cv2.rectangle(image, (left, top), (left + width, top + height), (0, 0, 255), 2)
        # 在矩形框上方添加文本(名称和置信度)
        image = cv2ImgAddText(image, f"{name}{score:.2f}", left, top - 40, textColor = (0, 0, 255), textSize = 40)  # 添加
        # cv2ImgAddText(图像, 文字内容, 字体左边开始位置, 字体上面开始位置, (R, G, B), 字体大小)
    # 显示结果图像
    cv2.namedWindow('检测结果', 0)
    cv2.imshow("检测结果", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # 可选:将结果保存到文件
    cv2.imwrite("detections_output.jpg", image)
# 示例检测数据
detections = response.json()
# 调用函数,传入图片路径和检测数据
draw_bounding_boxes(r'C:\Users\86185\1.jpg', detections)

3.3 测试结果


相关推荐
玄同7657 小时前
Python Random 模块深度解析:从基础 API 到 AI / 大模型工程化实践
人工智能·笔记·python·学习·算法·语言模型·llm
风指引着方向7 小时前
昇腾 AI 开发生产力工具:CANN CLI 的高级使用与自动化脚本编写
运维·人工智能·自动化
算法狗27 小时前
大模型面试题:1B的模型和1T的数据大概要训练多久
人工智能·深度学习·机器学习·语言模型
AIFarmer7 小时前
在EV3上运行Python语言——环境设置
python·ev3
23遇见7 小时前
CANN与开源生态:如何融入并赋能主流AI框架的NPU后端支持
人工智能
工程师老罗7 小时前
YOLOv1数据增强
人工智能·yolo
yunsr7 小时前
python作业3
开发语言·python
大模型真好玩7 小时前
中美大模型“内战”都怎么打!一文详解Claude Opus 4.6和GPT-5.3 CodeX核心特性
人工智能·agent·deepseek
历程里程碑7 小时前
普通数组-----除了自身以外数组的乘积
大数据·javascript·python·算法·elasticsearch·搜索引擎·flask
曦月逸霜7 小时前
Python快速入门——学习笔记(持续更新中~)
笔记·python·学习