神经网络保存-导入

保存

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_train=np.expand_dims(x_train,-1)

y_train_one_hot=tf.one_hot(y_train,10).numpy()
x_train=np.float32(x_train)

model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
 
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

import os
checkpoint_path="training_1/cp.ckpt"
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)


history=model.fit(x_train,y_train_one_hot,epochs=10,callbacks=[cp_callback])
LOSS=history.history["loss"]
plt.plot(LOSS)
plt.show()

导入

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_test=np.expand_dims(x_test,-1)
model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

checkpoint_path="training_1/cp.ckpt"
model.load_weights(checkpoint_path)

x_test=np.array(x_test,dtype=np.float32)
print(np.argmax(model.predict(x_test),axis=1))
print(y_test)
np.sum((y_test==np.argmax(model.predict(x_test),axis=1))*1)/y_test.shape[0]
相关推荐
杜子不疼.5 分钟前
AI Ping双款新模型同步免费解锁:GLM-4.7与MiniMax M2.1实测
人工智能
打码人的日常分享5 分钟前
企业数据资产管控和数据治理解决方案
大数据·运维·网络·人工智能·云计算
百***78757 分钟前
小米MiMo-V2-Flash深度解析:国产开源大模型标杆与海外AI接入方案
人工智能·开源
大数据追光猿9 分钟前
【Prompt】Prompt Caching:原理、实现与高并发价值
人工智能·大模型·prompt·agent
m0_6924571010 分钟前
图像的几何变换
人工智能·计算机视觉
疾风sxp11 分钟前
智能体开发技术体系架构(Java方向)
人工智能
摘星编程21 分钟前
AI Core硬件架构剖析:Cube、Vector、Scalar三核协同机制
人工智能·硬件架构·cann
2301_7921858823 分钟前
基于软件工程的结构化分析实验
人工智能·数据挖掘·软件工程
love530love31 分钟前
【笔记】Intel oneAPI 开发环境配置
人工智能·windows·笔记·oneapi·onednn·deep neural
数字冰雹31 分钟前
从“东数西算”到智慧机房:数字孪生如何重塑数据中心的“智能大脑”?
大数据·人工智能·数据可视化