神经网络保存-导入

保存

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_train=np.expand_dims(x_train,-1)

y_train_one_hot=tf.one_hot(y_train,10).numpy()
x_train=np.float32(x_train)

model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
 
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

import os
checkpoint_path="training_1/cp.ckpt"
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)


history=model.fit(x_train,y_train_one_hot,epochs=10,callbacks=[cp_callback])
LOSS=history.history["loss"]
plt.plot(LOSS)
plt.show()

导入

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_test=np.expand_dims(x_test,-1)
model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

checkpoint_path="training_1/cp.ckpt"
model.load_weights(checkpoint_path)

x_test=np.array(x_test,dtype=np.float32)
print(np.argmax(model.predict(x_test),axis=1))
print(y_test)
np.sum((y_test==np.argmax(model.predict(x_test),axis=1))*1)/y_test.shape[0]
相关推荐
MVP-curry-萌神10 分钟前
FPGA图像处理(六)------ 图像腐蚀and图像膨胀
图像处理·人工智能·fpga开发
struggle202527 分钟前
ebook2audiobook开源程序使用动态 AI 模型和语音克隆将电子书转换为带有章节和元数据的有声读物。支持 1,107+ 种语言
人工智能·开源·自动化
深空数字孪生30 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
sbc-study36 分钟前
双向Transformer:BERT(Bidirectional Encoder Representations from Transformers)
深度学习·bert·transformer
标贝科技44 分钟前
标贝科技:大模型领域数据标注的重要性与标注类型分享
数据库·人工智能
aminghhhh1 小时前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
格林威1 小时前
Baumer工业相机堡盟工业相机的工业视觉是否可以在室外可以做视觉检测项目
c++·人工智能·数码相机·计算机视觉·视觉检测
陈苏同学1 小时前
MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
人工智能·python·机器学习·数学建模·机器人·自动驾驶
努力毕业的小土博^_^2 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
天上路人2 小时前
采用AI神经网络降噪算法的语言降噪消回音处理芯片NR2049-P
深度学习·神经网络·算法·硬件架构·音视频·实时音视频·可用性测试