神经网络保存-导入

保存

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_train=np.expand_dims(x_train,-1)

y_train_one_hot=tf.one_hot(y_train,10).numpy()
x_train=np.float32(x_train)

model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
 
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

import os
checkpoint_path="training_1/cp.ckpt"
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)


history=model.fit(x_train,y_train_one_hot,epochs=10,callbacks=[cp_callback])
LOSS=history.history["loss"]
plt.plot(LOSS)
plt.show()

导入

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_test=np.expand_dims(x_test,-1)
model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

checkpoint_path="training_1/cp.ckpt"
model.load_weights(checkpoint_path)

x_test=np.array(x_test,dtype=np.float32)
print(np.argmax(model.predict(x_test),axis=1))
print(y_test)
np.sum((y_test==np.argmax(model.predict(x_test),axis=1))*1)/y_test.shape[0]
相关推荐
cooldream200925 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn5 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer5 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿6 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec6 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#