神经网络保存-导入

保存

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_train=np.expand_dims(x_train,-1)

y_train_one_hot=tf.one_hot(y_train,10).numpy()
x_train=np.float32(x_train)

model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
 
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

import os
checkpoint_path="training_1/cp.ckpt"
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)


history=model.fit(x_train,y_train_one_hot,epochs=10,callbacks=[cp_callback])
LOSS=history.history["loss"]
plt.plot(LOSS)
plt.show()

导入

python 复制代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()
 
#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'
    files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]
 
    paths = []
    for fname in files:
        paths.append(fname)
 
    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
 
    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
 
    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
 
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()

x_test=np.expand_dims(x_test,-1)
model=tf.keras.Sequential([
    tf.keras.layers.Conv2D(1,3,1),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation="relu"),
    tf.keras.layers.Dense(128,activation="relu"),
    tf.keras.layers.Dense(64,activation="relu"),
    tf.keras.layers.Dense(32,activation="relu"),
    tf.keras.layers.Dense(10,activation="softmax")
])
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])

checkpoint_path="training_1/cp.ckpt"
model.load_weights(checkpoint_path)

x_test=np.array(x_test,dtype=np.float32)
print(np.argmax(model.predict(x_test),axis=1))
print(y_test)
np.sum((y_test==np.argmax(model.predict(x_test),axis=1))*1)/y_test.shape[0]
相关推荐
ATM0061 小时前
人机协作系列(四)AI编程的下一个范式革命——看Factory AI如何重构软件工程?
人工智能·大模型·agent·人机协作·人机协同
读创商闻2 小时前
极狐GitLab CEO 柳钢——极狐 GitLab 打造中国企业专属 AI 编程平台,引领编程新潮流
人工智能·gitlab
kailp2 小时前
语言模型玩转3D生成:LLaMA-Mesh开源项目
人工智能·3d·ai·语言模型·llama·gpu算力
marteker2 小时前
弗兰肯斯坦式的人工智能与GTM策略的崩溃
人工智能·搜索引擎
无心水2 小时前
大语言模型零样本情感分析实战:无需机器学习训练,96%准确率实现指南
人工智能·机器学习·语言模型
来自于狂人2 小时前
AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
人工智能·云原生·kubernetes
橡晟7 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子7 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01057 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
Leah01058 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai