理解查准率P、查全率R及Fβ度量怎么得来的

如果得到的是一组样本在两个算法上的一次预测结果 ,其中每个样本都被赋予了一个为正样本的概率(例如,通过逻辑回归或朴素贝叶斯分类器得到的概率估计),那么可以通过改变不同的阈值点来利用这些预测结果画出PR曲线。

如果得到的是一组样本在两个算法上的一次预测结果 ,其中输出结果是每个样本的类别(例如决策树、支持向量机、k近邻算法),只能得到两个(R,P)点,无法直接画出完整的PR曲线,只能通过计算该情况下的fβ度量来衡量哪个算法好。

相关推荐
Python极客之家9 分钟前
基于数据挖掘的在线游戏行为分析预测系统
人工智能·python·机器学习·数据挖掘·毕业设计·课程设计
0xCode 小新1 小时前
【C语言内存函数完全指南】:memcpy、memmove、memset、memcmp 的用法、区别与模拟实现(含代码示例)
linux·c语言·人工智能·深度学习·机器学习·容器·内存函数
2401_841495642 小时前
【机器学习】朴素贝叶斯法
人工智能·python·数学·算法·机器学习·概率论·朴素贝叶斯法
时间醉酒2 小时前
逻辑回归(四):从原理到实战-训练,评估与应用指南
人工智能·python·算法·机器学习·逻辑回归
tirvideo4 小时前
RK3588芯片与板卡全面解析:旗舰级AIoT与边缘计算的核心
人工智能·嵌入式硬件·深度学习·目标检测·机器学习·计算机视觉·边缘计算
努力也学不会java4 小时前
【Java并发】揭秘Lock体系 -- 深入理解ReentrantLock
java·开发语言·人工智能·python·机器学习·reentrantlock
扫地的小何尚7 小时前
NVIDIA Dynamo深度解析:如何优雅地解决LLM推理中的KV缓存瓶颈
开发语言·人工智能·深度学习·机器学习·缓存·llm·nvidia
清风吹过14 小时前
少样本学习论文分享:多模态和类增量学习
论文阅读·人工智能·深度学习·学习·机器学习
java1234_小锋15 小时前
Scikit-learn Python机器学习 - 聚类分析算法 - K-Means(K均值)
机器学习·scikit-learn·k-means·k均值
葡萄与www16 小时前
模块化神经网络
人工智能·深度学习·神经网络·机器学习