理解查准率P、查全率R及Fβ度量怎么得来的

如果得到的是一组样本在两个算法上的一次预测结果 ,其中每个样本都被赋予了一个为正样本的概率(例如,通过逻辑回归或朴素贝叶斯分类器得到的概率估计),那么可以通过改变不同的阈值点来利用这些预测结果画出PR曲线。

如果得到的是一组样本在两个算法上的一次预测结果 ,其中输出结果是每个样本的类别(例如决策树、支持向量机、k近邻算法),只能得到两个(R,P)点,无法直接画出完整的PR曲线,只能通过计算该情况下的fβ度量来衡量哪个算法好。

相关推荐
机智的叉烧42 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
IT古董10 小时前
【漫话机器学习系列】019.布里(莱)尔分数(Birer score)
人工智能·深度学习·机器学习
gang_unerry11 小时前
量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多
人工智能·python·算法·机器学习·数学建模·矩阵·量子计算
视觉&物联智能12 小时前
【杂谈】-为什么Python是AI的首选语言
开发语言·人工智能·python·深度学习·机器学习
IT古董13 小时前
【机器学习】机器学习的基本分类-强化学习-模型预测控制(MPC:Model Predictive Control)
人工智能·机器学习·分类
叶庭云13 小时前
一文理解机器学习中二分类任务的评价指标 AUPRC 和 AUROC
机器学习·二分类·auprc·auroc·定义、原理、优缺点、适用场景
qq_5290252917 小时前
Torch.gather
python·深度学习·机器学习