理解查准率P、查全率R及Fβ度量怎么得来的

如果得到的是一组样本在两个算法上的一次预测结果 ,其中每个样本都被赋予了一个为正样本的概率(例如,通过逻辑回归或朴素贝叶斯分类器得到的概率估计),那么可以通过改变不同的阈值点来利用这些预测结果画出PR曲线。

如果得到的是一组样本在两个算法上的一次预测结果 ,其中输出结果是每个样本的类别(例如决策树、支持向量机、k近邻算法),只能得到两个(R,P)点,无法直接画出完整的PR曲线,只能通过计算该情况下的fβ度量来衡量哪个算法好。

相关推荐
云天徽上3 小时前
【数据可视化-21】水质安全数据可视化:探索化学物质与水质安全的关联
安全·机器学习·信息可视化·数据挖掘·数据分析
奋斗者1号5 小时前
逻辑回归:使用 S 型函数进行概率预测
算法·机器学习·逻辑回归
巷北夜未央6 小时前
杂谈-有感而发
人工智能·算法·机器学习
缘友一世6 小时前
机器学习中的“三态模型“:过拟合、欠拟合和刚刚好
人工智能·机器学习
最爱茄子包6 小时前
从0到1掌握机器学习核心概念:用Python亲手构建你的第一个AI模型(超多代码+可视化)
人工智能·python·机器学习
人猿泰飞9 小时前
【AI训练环境搭建】在Windows11上搭建WSL2+Ubuntu22.04+Tensorflow+GPU机器学习训练环境
windows·ubuntu·机器学习·wsl·gpu训练
硅谷秋水10 小时前
UniOcc:自动驾驶占用预测和预报的统一基准
人工智能·深度学习·机器学习·计算机视觉·自动驾驶
潦草通信狗10 小时前
Joint communication and state sensing under logarithmic loss
人工智能·深度学习·算法·机器学习·信号处理·信息论·通信感知一体化
AI大模型顾潇10 小时前
[特殊字符] 大模型对话风格微调项目实战——模型篇 [特殊字符]✨
人工智能·算法·机器学习·数据挖掘·大模型·微调·ai大模型
云天徽上11 小时前
【数据可视化-22】脱发因素探索的可视化分析
人工智能·机器学习·信息可视化·分类