PyTorch 张量数据类型

  • 【数据类型】Python 与 PyTorch 常见数据类型对应:

    a.type() 获取数据类型,用 isinstance(a, 目标类型) 进行类型合法化检测

    python3 复制代码
    >>> import torch
    >>> a = torch.randn(2,3)
    >>> a
    tensor([[-1.7818, -0.2472, -2.0684],
            [ 0.0117,  1.4698, -0.9359]])
    >>> a.type()  ## 获取数据类型
    'torch.FloatTensor'
    >>> isinstance(a, torch.FloatTensor)  ## 类型合法化检测
    True
    >>> 
  • 【什么是张量】标量与张量:用 a.dim(), a.shape 或者 a.size() 查看 dim 为 0 是标量,否则是张量

    python3 复制代码
    >>> import torch
    >>>
    >>> a = torch.tensor(1) 
    >>> a
    tensor(1)
    >>> a.dim()
    >>> 0  ## 标量
    
    >>> a = torch.Tensor([1]) 
    >>> a
    tensor([1.])
    >>> a.dim()
    >>> 1  ## 张量
  • 【生成张量】常见方法如下:

    • 常见随机方法:torch.randn(shape), torch.rand(shape), torch.randint(min, max, shape), torch.rand_like(a), torch.normal(mean, std) ... 具体示例如下

    • Dim 1 / rank 1: 以 size 2 为例

      python3 复制代码
      >>> a = torch.randn(2)   ## 随机,
      >>> a: tensor([1.4785, 0.6089])
      
      >>> a = torch.Tensor(2)   ## 接收维度, unintialized 不推荐
      >>> a: tensor([5.4086e+26, 4.5907e-41])
      >>> a = torch.Tensor([1,2])   ## 同 torch.tensor([1,2]) 接收具体数据
      >>> a: tensor([1, 2])
      
      >>> a = torch.from_numpy(np_data)  ## 数据维持不变,类型一一对应
      
      >>> a = torch.full([2],7)   ## 全部填充为一样的值   
      >>> a: tensor([7, 7])
      
      >>> a = torch.arange(0,10)   ## arange
      >>> a: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
      
      >>> a = torch.linspace(0,10, steps=4)   ##  
      >>> a: tensor([ 0.0000,  3.3333,  6.6667, 10.0000])
      >>> a = torch.logspace(0,10, steps=4) 
      >>> a: tensor([1.0000e+00, 2.1544e+03, 4.6416e+06, 1.0000e+10])
    • Dim 2 / rank 2: 以 size [2,3] 为例

      python3 复制代码
      >>> a = torch.randn(2, 3)   ## 随机 
      >>> a: tensor([[ 2.0631, -1.7011,  0.6375],
      	    	   [-1.2104, -1.3341, -0.8187]])
      
      >>> a = torch.Tensor(2, 3)   ## 接收维度, unintialized 不推荐   
      >>> a: tensor([[-0.2438, -0.9554, -0.4694],
      			   [ 0.8636,  1.6497, -0.8862]])
      >>> a = torch.Tensor([[1,2,3],[4,5,6]])  ## 同 torch.tensor([[1,2,3],[4,5,6]]) 接收具体数据 
      >>> a: tensor([[1., 2., 3.],
             		   [4., 5., 6.]])
      
      >>> a = torch.from_numpy(np_data)  ## 数据维持不变,类型一一对应
      
      >>> a = torch.full([2,3],7)  ## 全部填充为一样的值
      >>> a: tensor([[7, 7, 7],
                     [7, 7, 7]])

      ...


相关推荐
b***251130 分钟前
电池分选机:新能源时代的品质守护者|深圳比斯特自动化
大数据·人工智能·自动化
weixin_4578858231 分钟前
智能多媒体处理流水线——基于虎跃办公API的自动化解决方案
运维·数据库·人工智能·ai·自动化
IT科技观察38 分钟前
金融壹账通推出大模型一体机,加速金融行业AI落地与应用
大数据·人工智能·金融·云计算
带娃的IT创业者2 小时前
《AI大模型应知应会100篇》第4篇:Transformer架构深入浅出:大模型的基石
人工智能·架构·transformer
L_cl2 小时前
【NLP 面经 6】
人工智能·自然语言处理
Jamence2 小时前
多模态大语言模型arxiv论文略读(六)
人工智能·深度学习·语言模型
晨曦5432103 小时前
函数和模式化——python
开发语言·python
百万蹄蹄向前冲4 小时前
三句话四分钟,豆包出题把吾秀
前端·人工智能·豆包marscode
_painter5 小时前
【深度学习与实战】3.1 逻辑回归模型
人工智能·深度学习·逻辑回归
Verdure陌矣5 小时前
游戏开发中 C#、Python 和 C++ 的比较
c++·python·游戏·c#