[深度学习]基于C++和onnxruntime部署yolov10的onnx模型

基于C++和ONNX Runtime部署YOLOv10的ONNX模型,可以遵循以下步骤:

  1. 准备环境:首先,确保已经下载后指定版本opencv和onnruntime的C++库。

  2. 模型转换 :按照官方源码:https://github.com/THU-MIG/yolov10 安装好yolov10环境并将YOLOv10模型转换为ONNX格式。这通常涉及使用深度学习框架(如PyTorch或TensorFlow)加载原始模型,并导出为ONNX格式。转换指令

    复制代码
    # End-to-End ONNX
    yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=onnx opset=13 simplify
    # Predict with ONNX
    yolo predict model=yolov10n/s/m/b/l/x.onnx
  3. C++环境配置:在CMakeLists.txt项目中正确引用了opencv和ONNX Runtime的头文件,并链接到相应的库。这允许在C++代码中使用ONNX Runtime的功能。

  4. 加载模型:使用ONNX Runtime的API加载转换后的YOLOv10 ONNX模型。

  5. 执行推理:通过ONNX Runtime的推理引擎,将图像数据输入到模型中,并执行目标检测任务。

  6. 处理结果:解析模型输出的结果,这通常涉及将输出的张量数据转换为可理解的检测结果,如边界框坐标和类别标签。

通过这些步骤,可以在C++环境中利用ONNX Runtime高效地部署YOLOv10模型,实现实时的目标检测功能。

【测试环境】

windows10 x64

vs2019

cmake==2.24.3

onnxruntime==1.12.0

opencv==4.7.0

【使用步骤】

首先cmake生成exe文件,然后将onnxruntime.dll和onnxruntime_providers_shared.dll放到exe一起,不然会提示报错0xc000007b,这是因为系统目录也有个onnxruntime.dll引发冲突,并把car.mp4也放到exe一起。运行直接输入

yolov10.exe C:\Users\Administrator\Desktop\yolov10-onnx-cplus\models\yolov10n.onnx

注意onnx路径要是你真实路径我的onnx路径是我桌面上地址

【代码调用】

注意onnxruntime使用的cpu版本库,如需使用GPU还需要修改代码才行

复制代码
#include "YOlov10Manager.h"
#include <iostream>
#include <opencv2/opencv.hpp>

int main(int argc, char const *argv[])
{
    std::string model_path = argv[1];
    cv::namedWindow("yolov10", cv::WINDOW_AUTOSIZE);
    Yolov10Manager detector(model_path);
    
    cv::VideoCapture cap("car.mp4");//这个地方也可以修改成视频路径或者摄像头索引
    if (!cap.isOpened())
    {
        std::cerr << "ERROR! Unable to open camera\n";
        return -1;
    }
    cv::Mat frame;
    std::cout << "Start detect" << std::endl << "Press any key to terminate" << std::endl;

    for (;;)
    {
        cap.read(frame);
        if (frame.empty())
        {
            std::cerr << "ERROR! blank frame grabbed\n";
            break;
        }

        auto timer = cv::getTickCount();
        std::vector<Detection> detections = detector.Inference(frame);
        double fps = cv::getTickFrequency() / ((double)cv::getTickCount() - timer);
        cv::putText(frame, "FPS: " + std::to_string(fps), cv::Point(10, 30), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 0), 2, 8);
        cv::Mat resultImg = detector.DrawImage(frame, detections);
        cv::imshow("yolov10", resultImg);
        if (cv::waitKey(5) >= 0)
            break;
    }

    return 0;
}

【视频演示】

基于C++和onnxruntime部署yolov10的onnx模型_哔哩哔哩_bilibili测试环境:windows10 x64vs2019cmake==2.24.3onnxruntime==1.12.0opencv==4.7.0使用步骤:首先cmake生成exe文件,然后将onnxruntime.dll和onnxruntime_providers_shared.dll放到exe一起,不然会提示报错0xc000007b,这是因为系统目录也有个onnxruntime.dll引发冲突,并把c, 视频播放量 4、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 1、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:易语言部署yolox的onnx模型,yolov5最新版onnx部署Android安卓ncnn,C#使用纯opencvsharp部署yolov8-onnx图像分类模型,老师可真会玩!,使用C#部署yolov8的目标检测tensorrt模型,C# winform部署yolov10的onnx模型,YOLOv8检测界面-PyQt5实现,2024年新版【YOLOV5从入门到实战教程】B站最良心的YOLOV5全套教程(适合小白)含源码!---YOLOV5、YOLOV5实战、目标检测、计算机视觉,C#使用onnxruntime部署Detic检测2万1千种类别的物体,使用纯opencv部署yolov8目标检测模型onnxhttps://www.bilibili.com/video/BV1Zw4m1v7iz/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【源码下载】

相关推荐
Ryan老房13 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
L_090713 小时前
【C++】高阶数据结构 -- 红黑树
数据结构·c++
All The Way North-15 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑16 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh16 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
智者知已应修善业16 小时前
【查找字符最大下标以*符号分割以**结束】2024-12-24
c语言·c++·经验分享·笔记·算法
91刘仁德17 小时前
c++类和对象(下)
c语言·jvm·c++·经验分享·笔记·算法
diediedei17 小时前
模板编译期类型检查
开发语言·c++·算法
mmz120717 小时前
分治算法(c++)
c++·算法
一切尽在,你来17 小时前
C++多线程教程-1.2.1 C++11/14/17 并发特性迭代
开发语言·c++