Python实战:小说分词统计-数据可视化

在这篇博客中,我们将利用Python的jiebamatplotlib库,对经典小说《战争与和平》进行中文词语分析,统计小说中出现最多的10个人名,并以柱形图的形式展示结果。我们会特别处理一些别名,使统计结果更为准确。

步骤概览

具体实现

读取文本数据 : 我们首先将《战争与和平》的文本文件读入程序中。这里假设文件名为war_and_peace.txt并且位于当前工作目录。

使用jieba进行分词jieba是一个中文分词工具,我们使用它将整篇文章分割成一个个单词。

统计人名出现次数 : 我们定义了一个包含主要人名的列表,并使用Counter对这些人名在分词结果中的出现次数进行统计。

合并别名: 为了统计的准确性,我们将一些别名合并到相应的人名。例如,"公爵"计入"安德烈","小姐"计入"娜塔莎","伯爵"计入"皮埃尔"。

绘制统计图表 : 使用matplotlib绘制柱形图,展示出现次数最多的10个人名及其出现次数。

结果展示

运行上述代码后,我们得到一张柱形图,显示了《战争与和平》中出现次数最多的10个人名及其出现次数。这种可视化方法可以帮助我们更直观地理解小说中主要人物的出场频率和重要性。

总结

通过这篇博客,我们展示了如何利用Python的jiebamatplotlib库对中文文本进行词语分析,并绘制统计图表。希望这篇博客能对你有所帮助,如果有任何问题或建议,欢迎留言讨论!


请确保在运行代码前已安装必要的Python库:

sh 复制代码
pip install jieba matplotlib

并将《战争与和平》的文本文件命名为war_and_peace.txt,放置在当前工作目录中。

程序

👉更多项目,点我查看

相关推荐
湫ccc2 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤5 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
程序伍六七6 分钟前
day16
开发语言·c++
羊小猪~~9 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
wkj00110 分钟前
php操作redis
开发语言·redis·php
lzhlizihang11 分钟前
python如何使用spark操作hive
hive·python·spark
q0_0p12 分钟前
牛客小白月赛105 (Python题解) A~E
python·牛客
极客代码15 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
庞传奇17 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
土豆湿21 分钟前
拥抱极简主义前端开发:NoCss.js 引领无 CSS 编程潮流
开发语言·javascript·css