Python实战:小说分词统计-数据可视化

在这篇博客中,我们将利用Python的jiebamatplotlib库,对经典小说《战争与和平》进行中文词语分析,统计小说中出现最多的10个人名,并以柱形图的形式展示结果。我们会特别处理一些别名,使统计结果更为准确。

步骤概览

具体实现

读取文本数据 : 我们首先将《战争与和平》的文本文件读入程序中。这里假设文件名为war_and_peace.txt并且位于当前工作目录。

使用jieba进行分词jieba是一个中文分词工具,我们使用它将整篇文章分割成一个个单词。

统计人名出现次数 : 我们定义了一个包含主要人名的列表,并使用Counter对这些人名在分词结果中的出现次数进行统计。

合并别名: 为了统计的准确性,我们将一些别名合并到相应的人名。例如,"公爵"计入"安德烈","小姐"计入"娜塔莎","伯爵"计入"皮埃尔"。

绘制统计图表 : 使用matplotlib绘制柱形图,展示出现次数最多的10个人名及其出现次数。

结果展示

运行上述代码后,我们得到一张柱形图,显示了《战争与和平》中出现次数最多的10个人名及其出现次数。这种可视化方法可以帮助我们更直观地理解小说中主要人物的出场频率和重要性。

总结

通过这篇博客,我们展示了如何利用Python的jiebamatplotlib库对中文文本进行词语分析,并绘制统计图表。希望这篇博客能对你有所帮助,如果有任何问题或建议,欢迎留言讨论!


请确保在运行代码前已安装必要的Python库:

sh 复制代码
pip install jieba matplotlib

并将《战争与和平》的文本文件命名为war_and_peace.txt,放置在当前工作目录中。

程序

👉更多项目,点我查看

相关推荐
姓学名生1 分钟前
李沐vscode配置+github管理+FFmpeg视频搬运+百度API添加翻译字幕
vscode·python·深度学习·ffmpeg·github·视频
黑客-雨12 分钟前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
Pandaconda16 分钟前
【Golang 面试题】每日 3 题(三十九)
开发语言·经验分享·笔记·后端·面试·golang·go
加油,旭杏20 分钟前
【go语言】变量和常量
服务器·开发语言·golang
行路见知21 分钟前
3.3 Go 返回值详解
开发语言·golang
xcLeigh24 分钟前
WPF实战案例 | C# WPF实现大学选课系统
开发语言·c#·wpf
孤独且没人爱的纸鹤26 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
l1x1n029 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
NoneCoder35 分钟前
JavaScript系列(38)-- WebRTC技术详解
开发语言·javascript·webrtc
关关钧1 小时前
【R语言】数学运算
开发语言·r语言