基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

https://download.csdn.net/download/xziyuan/89334371?spm=1001.2101.3001.9500

最近,我一直在探索如何利用Langchain来构建一个本地的大型语言模型问答系统。在这个过程中,我找到了一套源代码并进行了部署。以下是我在这个过程中的一些经验和笔记,希望对读者有所帮助。源代码已经上传,可以通过源码下载链接获取。

问答系统架构概览

目前的问答系统架构大致相同,可以概括为以下流程:

  1. 内容抽取与向量化:将长文档分割成多个小块,每个块的大小通常小于向量模型能处理的最大上下文限制。分割策略可以简单,也可以复杂,例如在相邻块之间保留重复内容,以减少简单分割带来的信息损失,并增强块的上下文信息。

  2. 块向量化:将分割后的块进行向量化处理,并存储在向量数据库中,如Elasticsearch、pg_vector或Faiss等。

  3. ANN向量搜索:对于输入的查询(query),使用相同的嵌入模型进行向量化,然后在向量数据库中检索出n个最相关的文档。

  4. 文档合并与LLM问答:将检索到的最近文档合并成上下文,并提供给大型语言模型(LLM)进行问答,构建相应的提示(prompt)。

源码分享

我分享的这套源码是同事提供的,已经上传至CSDN,可以0积分下载。我使用法律问答数据对其进行了测试,发现准确率相当令人满意。特别是使用API形式的chatglm-turbo模型,其性能明显优于本地7b参数的模型。

细节优化

虽然简单的问答系统架构大致相同,但在具体实现中有许多细节可以优化,例如如何更有效地分割文档、如何提高检索的召回率,以及如何构建有效的指令模板等。

通过这次研究和部署经验,我深刻体会到了构建一个高效、准确的问答系统需要考虑的诸多因素。希望我的分享能为有志于这一领域的同仁提供一些参考和启发。

相关推荐
一刀到底2118 分钟前
ai agent(智能体)开发 python3基础8 网页抓取中 selenium 和 Playwright 区别和联系
人工智能·python
每天都要写算法(努力版)13 分钟前
【神经网络与深度学习】改变随机种子可以提升模型性能?
人工智能·深度学习·神经网络
烟锁池塘柳031 分钟前
【计算机视觉】三种图像质量评价指标详解:PSNR、SSIM与SAM
人工智能·深度学习·计算机视觉
小森77671 小时前
(六)机器学习---聚类与K-means
人工智能·机器学习·数据挖掘·scikit-learn·kmeans·聚类
RockLiu@8051 小时前
探索PyTorch中的空间与通道双重注意力机制:实现concise的scSE模块
人工智能·pytorch·python
进取星辰1 小时前
PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
人工智能·pytorch·深度学习
极客智谷2 小时前
Spring AI应用系列——基于ARK实现多模态模型应用
人工智能·后端
思悟小卒2 小时前
可以自我反思的检索增强生成
人工智能
学点技术儿2 小时前
torch.cuda.empty_cache()使用场景
人工智能
孔令飞2 小时前
如何在 Go 中实现各种类型的链表?
人工智能·云原生·go