基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

https://download.csdn.net/download/xziyuan/89334371?spm=1001.2101.3001.9500

最近,我一直在探索如何利用Langchain来构建一个本地的大型语言模型问答系统。在这个过程中,我找到了一套源代码并进行了部署。以下是我在这个过程中的一些经验和笔记,希望对读者有所帮助。源代码已经上传,可以通过源码下载链接获取。

问答系统架构概览

目前的问答系统架构大致相同,可以概括为以下流程:

  1. 内容抽取与向量化:将长文档分割成多个小块,每个块的大小通常小于向量模型能处理的最大上下文限制。分割策略可以简单,也可以复杂,例如在相邻块之间保留重复内容,以减少简单分割带来的信息损失,并增强块的上下文信息。

  2. 块向量化:将分割后的块进行向量化处理,并存储在向量数据库中,如Elasticsearch、pg_vector或Faiss等。

  3. ANN向量搜索:对于输入的查询(query),使用相同的嵌入模型进行向量化,然后在向量数据库中检索出n个最相关的文档。

  4. 文档合并与LLM问答:将检索到的最近文档合并成上下文,并提供给大型语言模型(LLM)进行问答,构建相应的提示(prompt)。

源码分享

我分享的这套源码是同事提供的,已经上传至CSDN,可以0积分下载。我使用法律问答数据对其进行了测试,发现准确率相当令人满意。特别是使用API形式的chatglm-turbo模型,其性能明显优于本地7b参数的模型。

细节优化

虽然简单的问答系统架构大致相同,但在具体实现中有许多细节可以优化,例如如何更有效地分割文档、如何提高检索的召回率,以及如何构建有效的指令模板等。

通过这次研究和部署经验,我深刻体会到了构建一个高效、准确的问答系统需要考虑的诸多因素。希望我的分享能为有志于这一领域的同仁提供一些参考和启发。

相关推荐
摘星编程3 分钟前
RAG重塑搜索:如何用检索增强生成打造企业级AI问答系统
人工智能
啊阿狸不会拉杆4 分钟前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
曦月逸霜9 分钟前
机器学习——个人笔记(持续更新中~)
人工智能·机器学习
新缸中之脑11 分钟前
30个最好的3D相关AI代理技能
人工智能·3d
Pyeako12 分钟前
opencv计算机视觉--LBPH&EigenFace&FisherFace人脸识别
人工智能·python·opencv·计算机视觉·lbph·eigenface·fisherface
uXrvbWJGleS13 分钟前
三相两电平整流器Simulink仿真探究
langchain
工程师老罗14 分钟前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
猫头虎15 分钟前
手动部署开源OpenClaw汉化中文版过程中常见问题排查手册
人工智能·langchain·开源·github·aigc·agi·openclaw
多恩Stone16 分钟前
【3D AICG 系列-9】Trellis2 推理流程图超详细介绍
人工智能·python·算法·3d·aigc·流程图
整得咔咔响18 分钟前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习