基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

https://download.csdn.net/download/xziyuan/89334371?spm=1001.2101.3001.9500

最近,我一直在探索如何利用Langchain来构建一个本地的大型语言模型问答系统。在这个过程中,我找到了一套源代码并进行了部署。以下是我在这个过程中的一些经验和笔记,希望对读者有所帮助。源代码已经上传,可以通过源码下载链接获取。

问答系统架构概览

目前的问答系统架构大致相同,可以概括为以下流程:

  1. 内容抽取与向量化:将长文档分割成多个小块,每个块的大小通常小于向量模型能处理的最大上下文限制。分割策略可以简单,也可以复杂,例如在相邻块之间保留重复内容,以减少简单分割带来的信息损失,并增强块的上下文信息。

  2. 块向量化:将分割后的块进行向量化处理,并存储在向量数据库中,如Elasticsearch、pg_vector或Faiss等。

  3. ANN向量搜索:对于输入的查询(query),使用相同的嵌入模型进行向量化,然后在向量数据库中检索出n个最相关的文档。

  4. 文档合并与LLM问答:将检索到的最近文档合并成上下文,并提供给大型语言模型(LLM)进行问答,构建相应的提示(prompt)。

源码分享

我分享的这套源码是同事提供的,已经上传至CSDN,可以0积分下载。我使用法律问答数据对其进行了测试,发现准确率相当令人满意。特别是使用API形式的chatglm-turbo模型,其性能明显优于本地7b参数的模型。

细节优化

虽然简单的问答系统架构大致相同,但在具体实现中有许多细节可以优化,例如如何更有效地分割文档、如何提高检索的召回率,以及如何构建有效的指令模板等。

通过这次研究和部署经验,我深刻体会到了构建一个高效、准确的问答系统需要考虑的诸多因素。希望我的分享能为有志于这一领域的同仁提供一些参考和启发。

相关推荐
cooldream20097 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer5 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
ai大师5 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec6 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉