基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

https://download.csdn.net/download/xziyuan/89334371?spm=1001.2101.3001.9500

最近,我一直在探索如何利用Langchain来构建一个本地的大型语言模型问答系统。在这个过程中,我找到了一套源代码并进行了部署。以下是我在这个过程中的一些经验和笔记,希望对读者有所帮助。源代码已经上传,可以通过源码下载链接获取。

问答系统架构概览

目前的问答系统架构大致相同,可以概括为以下流程:

  1. 内容抽取与向量化:将长文档分割成多个小块,每个块的大小通常小于向量模型能处理的最大上下文限制。分割策略可以简单,也可以复杂,例如在相邻块之间保留重复内容,以减少简单分割带来的信息损失,并增强块的上下文信息。

  2. 块向量化:将分割后的块进行向量化处理,并存储在向量数据库中,如Elasticsearch、pg_vector或Faiss等。

  3. ANN向量搜索:对于输入的查询(query),使用相同的嵌入模型进行向量化,然后在向量数据库中检索出n个最相关的文档。

  4. 文档合并与LLM问答:将检索到的最近文档合并成上下文,并提供给大型语言模型(LLM)进行问答,构建相应的提示(prompt)。

源码分享

我分享的这套源码是同事提供的,已经上传至CSDN,可以0积分下载。我使用法律问答数据对其进行了测试,发现准确率相当令人满意。特别是使用API形式的chatglm-turbo模型,其性能明显优于本地7b参数的模型。

细节优化

虽然简单的问答系统架构大致相同,但在具体实现中有许多细节可以优化,例如如何更有效地分割文档、如何提高检索的召回率,以及如何构建有效的指令模板等。

通过这次研究和部署经验,我深刻体会到了构建一个高效、准确的问答系统需要考虑的诸多因素。希望我的分享能为有志于这一领域的同仁提供一些参考和启发。

相关推荐
修复bug29 分钟前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼32 分钟前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
励志成为大佬的小杨1 小时前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙1 小时前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能1 小时前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人2 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
zm-v-159304339862 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt
果冻人工智能2 小时前
美国狂奔,中国稳走,AI赛道上的龟兔之争?
人工智能