基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

基于Langchain构建本地大型语言模型(LLM)问答系统的经验分享

https://download.csdn.net/download/xziyuan/89334371?spm=1001.2101.3001.9500

最近,我一直在探索如何利用Langchain来构建一个本地的大型语言模型问答系统。在这个过程中,我找到了一套源代码并进行了部署。以下是我在这个过程中的一些经验和笔记,希望对读者有所帮助。源代码已经上传,可以通过源码下载链接获取。

问答系统架构概览

目前的问答系统架构大致相同,可以概括为以下流程:

  1. 内容抽取与向量化:将长文档分割成多个小块,每个块的大小通常小于向量模型能处理的最大上下文限制。分割策略可以简单,也可以复杂,例如在相邻块之间保留重复内容,以减少简单分割带来的信息损失,并增强块的上下文信息。

  2. 块向量化:将分割后的块进行向量化处理,并存储在向量数据库中,如Elasticsearch、pg_vector或Faiss等。

  3. ANN向量搜索:对于输入的查询(query),使用相同的嵌入模型进行向量化,然后在向量数据库中检索出n个最相关的文档。

  4. 文档合并与LLM问答:将检索到的最近文档合并成上下文,并提供给大型语言模型(LLM)进行问答,构建相应的提示(prompt)。

源码分享

我分享的这套源码是同事提供的,已经上传至CSDN,可以0积分下载。我使用法律问答数据对其进行了测试,发现准确率相当令人满意。特别是使用API形式的chatglm-turbo模型,其性能明显优于本地7b参数的模型。

细节优化

虽然简单的问答系统架构大致相同,但在具体实现中有许多细节可以优化,例如如何更有效地分割文档、如何提高检索的召回率,以及如何构建有效的指令模板等。

通过这次研究和部署经验,我深刻体会到了构建一个高效、准确的问答系统需要考虑的诸多因素。希望我的分享能为有志于这一领域的同仁提供一些参考和启发。

相关推荐
黎燃18 分钟前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享27 分钟前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲40 分钟前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin41 分钟前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.8241 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚1 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI1 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超2 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
努力还债的学术吗喽2 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写