Windows安装配置CUDA12.5

搞大模型往往都需要GPU加速,本次在家里的PC上安装CUDA来实现GPU加速。

一、环境准备

操作系统:Windows11 23H2

GPU:RTX 4070 Ti Super

显卡驱动:555.99 (NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

注意:尽量安装Studio版本的驱动(否则需要在安装过程中取消很多组件的安装)

(可选)尽量已安装Visual Studio,笔者安装的是Visual Studio 2022 (不赘述)。

二、安装CUDA

  1. 查看当前的英伟达显卡驱动版本

按Win+R,输入cmd,在命令行中输入 nvidia-smi,即可查看显卡驱动版本

本机的显卡驱动版本为555.99。

1. CUDA 12.5 Release Notes --- Release Notes 12.5 documentation 中查看适合当前显卡驱动版本对应的CUDA版本

本机的显卡驱动版本为555.99,因此可以安装CUDA 12.5。

若你的显卡驱动版本较低,又想装高版本CUDA,需要对显卡驱动进行升级。

在英伟达官网上下载CUDA,地址:

https://developer.nvidia.com/cuda-toolkit-archive

选择相应的系统、架构、系统版本、以及安装模式,点击download进行下载。

下载完成后双击安装即可(安装过程中大部分可以保持默认设置,直接下一步)。

提取安装文件的临时存放位置,保持默认,点击OK

选择【精简】或【自定义】均可,建议选【自定义】

安装位置可以点击浏览自选

安装完毕

测试CUDA是否安装成功,重新打开命令行,切换到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\extras\demo_suite下,运行bandwidthTest.exe测试程序,看结果是否为"PASS"(成功)。

三、安装cuDNN

下载合适的cuDNN版本,下载地址:https://developer.nvidia.com/rdp/cudnn-archive

选择:Download cuDNN v8.9.7 (December 5th, 2023), for CUDA 12.x下的Windows压缩包进行下载。注意下载时要注册账号。

下载完成直接解压,将其中的这三个文件夹复制到CUDA安装路径(默认路径C:\Program Files\NVlDlA GPU Computing Toolkit\CUDA\v12.5)下对应的文件夹,与原先同名文件合并。

四、配置环境变量

点击【此电脑】---【右键】---【属性】---【高级系统设置】---【环境变量】,打开环境变量窗口。

找到Path变量并双击,添加指向CUDA Development 安装路径下的 bin文件夹和libnvvp 文件夹(实际安装过程中已自动添加,~~省事)。

重新打开命令行窗口,输入nvcc -V,出现如下信息,表示安装成功。

注:至此安装已结束,网上还有一些教程说需要安装zlib。对于新版本的CUDA来说不需要,且最新的官方安装文档显式Windows下已无需安装zlib。

五、在PyTorch中测试CUDA

安装PyTorch

bash 复制代码
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

如果网速慢无法下载,直接下载安装包:https://download.pytorch.org/whl/cu121/torch-2.3.1%2Bcu121-cp311-cp311-win_amd64.whl

编写如下Python代码:

python 复制代码
# -*- coding: utf-8 -*-

import time
import torch


def torch_cuda():
    # 判断是否有cuda
    print(torch.cuda.is_available())
    # 查看cuda设备数量
    print(torch.cuda.device_count())
    # 查看当前CUDA设备名称
    print(torch.cuda.get_device_name(0))
    # 查看当前CUDA使用详情
    print(torch.cuda.memory_summary())

    # 使用cuda进行矩阵乘法
    start_time1 = time.time()
    x = torch.randn(20000, 20000).to("cuda")
    y = torch.randn(20000, 20000).to("cuda")
    z = torch.matmul(x, y)
    end_time1 = time.time()
    print("Time1 (With CUDA): ", end_time1 - start_time1)

    # 不使用cuda进行矩阵乘法
    start_time2 = time.time()
    xx = torch.randn(20000, 20000)
    yy = torch.randn(20000, 20000)
    zz = torch.matmul(xx, yy)
    end_time2 = time.time()
    print("Time2 (Without CUDA): ", end_time2 - start_time2)


if __name__ == '__main__':
    torch_cuda()

结果如下:

有CUDA加速的情况下,20000*20000的矩阵乘法耗时降为原先的1/8。

六、常见问题

CUDA安装失败

解决方案:再重新运行CUDA安装包,安装模式选【自定义】,然后取消相关失败的组件即可。

参考:

Installing cuDNN on Windows --- NVIDIA cuDNN v9.2.0 documentation

Installation Guide :: NVIDIA cuDNN Documentation

CUDA超详细安装教程(windows版)_windows安装cuda-CSDN博客

相关推荐
奋斗鱼22 分钟前
如何清除windows 远程桌面连接的IP记录
windows
对 酒 当 歌 人 生 几 何1 小时前
sui在windows虚拟化子系统Ubuntu和纯windows下的安装和使用
linux·windows·ubuntu
qq_393828221 小时前
Windows ABBYY FineReader 16 Corporate 文档转换、PDF编辑和文档比较
windows·microsoft·电脑·开源软件·软件需求
火云牌神12 小时前
在windows系统中安装图数据库NEO4J
数据库·windows·neo4j
魔障阿Q14 小时前
windows使用bat脚本激活conda环境
人工智能·windows·python·深度学习·conda
开花沼泽.21 小时前
CentOS9与Windows通过Samba实现永久共享配置
windows
梁萌1 天前
Windows系统Jenkins企业级实战
运维·windows·ci/cd·svn·jenkins
不会飞的鲨鱼1 天前
Windows系统下【Celery任务队列】python使用celery 详解(二)
开发语言·windows·python
扛枪的书生1 天前
AD 侦查-LLMNR 毒化
windows·渗透·kali·提权·域渗透
时之彼岸Φ1 天前
Windows:Powershell的使用
windows