文章MSM_metagenomics(五):共现分析

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等)的共现模式。

数据

大家通过以下链接下载数据:

Python packages required

Co-presence pattern analysis

使用step_curve_drawer.py 做共线性分析

  • 代码
python 复制代码
#!/usr/bin/env python

"""
NAME: step_curve_drawer.py
DESCRIPTION: This script is to analyze the co-prsense of multiple species in different categories,
             by drawing step curves.
"""

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
import argparse
import textwrap

def read_args(args):
    # This function is to parse arguments

    parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
                                    description = textwrap.dedent('''\
                                     This program is to do draw step curves to analyze co-presense of multiple species in different groups.
                                     '''),
                                    epilog = textwrap.dedent('''\
                                    examples:step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>
                                    '''))
    parser.add_argument('--abundance_table',
                        nargs = '?',
                        help = 'Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.',
                        type = str,
                        default = None)

    parser.add_argument('--variable',
                        nargs = '?',
                        help = 'Specify the header of the variable in the metadata table you want to assess. For example, \
                        [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].',
                        type = str,
                        default = None)

    parser.add_argument('--minimum_abundance',
                        nargs = '?',
                        help = 'Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default',
                        type = float,
                        default = 0.0)

    parser.add_argument('--species_number',
                        nargs = '?',
                        help = 'Specify the total number of multiple species in the analysis.',
                        type = int)


    parser.add_argument('--output',
                        nargs = '?',
                        help = 'Specify the output figure name.',
                        type = str,
                        default = None)
    parser.add_argument('--palette',
                        nargs = '?',
                        help = 'Input a tab-delimited mapping file where values are group names and keys are color codes.',
                        type = str,
                        default = None)

    return vars(parser.parse_args())

class PandasDealer:
    """
    This is an object for dealing pandas dataframe.
    """

    def __init__(self, df_):

        self.df_ = df_

    def read_csv(self):
        # Ths fucntion will read tab-delimitted file into a pandas dataframe.

        return pd.read_csv(self.df_, sep = '\t', index_col = False, low_memory=False)

    def rotate_df(self):
        # this function is to rotate the metaphlan-style table into tidy dataframe to ease searching work,

        df_ = self.read_csv()
        df_rows_lists = df_.values.tolist()
        rotated_df_dict = {df_.columns[0]: df_.columns[1:]}
        for i in df_rows_lists:
            rotated_df_dict[i[0]] = i[1:]

        rotated_df = pd.DataFrame.from_dict(rotated_df_dict)
        
        return rotated_df

class CopEstimator:

    def __init__(self, sub_df_md):
        self.sub_df_md = sub_df_md # sub_df_md: a subset of dataframe which contains only a group of species one wants to do co-presence analysis.

    def make_copresense_df(self, factor, total_species_nr, threshold = 0.0):
        # factor: the factor you want to assess the category percentage.
        # total_species_nr: specify the total number of species you want to do co-presense analysis.


        rotated_df = PandasDealer(self.sub_df_md)
        rotated_df = rotated_df.rotate_df()
        cols = rotated_df.columns[-total_species_nr: ].to_list() 
        categories = list(set(rotated_df[factor].to_list()))
        

        copresense = []
        cate_name = []
        ratios = []
        for c in categories:
            sub_df = rotated_df[rotated_df[factor] == c]
            species_group_df = sub_df[cols]
            species_group_df = species_group_df.apply(pd.to_numeric)
            species_group_df['total'] = species_group_df[cols].gt(threshold).sum(axis=1)
            for i in range(1, total_species_nr + 1):
                ratio = count_non_zero_rows(species_group_df, i)
                copresense.append(i)
                cate_name.append(c)
                ratios.append(ratio)

        return pd.DataFrame.from_dict({"copresense": copresense,
                                        factor: cate_name,
                                        "percentage": ratios})

def count_non_zero_rows(df_, nr):
    total_rows = len(df_.index)
    
    sub_df = df_[df_['total'] >= nr]
    ratio = len(sub_df.index)/total_rows

    return ratio
    

class VisualTools:
    def __init__(self, processed_df, factor):
        self.processed_df = processed_df
        self.factor = factor

    def step_curves(self, opt_name, palette = None):
        categories = list(set(self.processed_df[self.factor].to_list()))
        if palette:
            palette_dict = {i.rstrip().split('\t')[0]: i.rstrip().split('\t')[1] for i in open(palette).readlines()}
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c, color = palette_dict[c])
        else:
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c)

        plt.title("Number of species in an individual if present")
        plt.xlabel("Percentage")
        plt.ylabel("Co-presense")
        plt.legend(title = self.factor)
        plt.savefig(opt_name, bbox_inches = "tight")


if __name__ == "__main__":

    pars = read_args(sys.argv)
    cop_obj = CopEstimator(pars['abundance_table'])
    p_df = cop_obj.make_copresense_df(pars['variable'], pars['species_number'], pars['minimum_abundance'])
    vis_obj = VisualTools(p_df, pars['variable'])
    vis_obj.step_curves(pars['output'], palette = pars['palette'])
  • 用法
python 复制代码
usage: step_curve_drawer.py [-h] [--abundance_table [ABUNDANCE_TABLE]] [--variable [VARIABLE]] [--minimum_abundance [MINIMUM_ABUNDANCE]] [--species_number [SPECIES_NUMBER]] [--output [OUTPUT]]
                            [--palette [PALETTE]]

This program is to do draw step curves to analyze co-presense of multiple species in different groups.

optional arguments:
  -h, --help            show this help message and exit
  --abundance_table [ABUNDANCE_TABLE]
                        Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.
  --variable [VARIABLE]
                        Specify the header of the variable in the metadata table you want to assess. For example, [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].
  --minimum_abundance [MINIMUM_ABUNDANCE]
                        Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default
  --species_number [SPECIES_NUMBER]
                        Specify the total number of multiple species in the analysis.
  --output [OUTPUT]     Specify the output figure name.
  --palette [PALETTE]   Input a tab-delimited mapping file where values are group names and keys are color codes.

examples:

python step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>

为了演示step_curve_drawer.py的使用,我们将绘制基于metaphlan相对丰度表特定于Segatalla copri (之前称为Prevotella copri )的八个谱系:./data/mpa4_pcopri_abundances_md.tsv的共现模式,这些数据来自MSMNon-MSM 人群。MSMNon-MSM 样本将使用自定义颜色进行标记,颜色分配来自一个颜色映射文件color map file: ./data/copresence_color_map.tsv

bash 复制代码
python step_curve_drawer.py \
  --abundance_table mpa_pcopri_abundances_md.tsv \
  --variable sexual_orientation \
  --species_number 8 \
  --palette copresence_color_map.tsv \
  --output copresence_plot.png
相关推荐
高-老师1 天前
基于R语言的物种气候生态位动态量化与分布特征模拟
开发语言·r语言·物种气候
Tiger Z1 天前
R 语言科研绘图 --- 其他绘图-汇总2
r语言·论文·科研·绘图·研究生
WangYan20221 天前
【物种分布模型】R语言物种气候生态位动态量化与分布特征模拟——气候生态位动态检验、质心转移可视化、适生区预测等
r语言·物种分布模型·物种气候生态位
用户Taobaoapi20141 天前
京东店铺所有商品API技术开发文档
大数据·数据挖掘·数据分析
华科云商xiao徐2 天前
告别IP被封!分布式爬虫的“隐身”与“分身”术
爬虫·数据挖掘·数据分析
q567315232 天前
告别低效:构建健壮R爬虫的工程思维
开发语言·爬虫·r语言
没有梦想的咸鱼185-1037-16632 天前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
m0_575046342 天前
FPGA数据流分析
数据分析·fpga·数据流分析
思辨共悟2 天前
Python的价值:突出在数据分析与挖掘
python·数据分析
用户Taobaoapi20143 天前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析