文章MSM_metagenomics(五):共现分析

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等)的共现模式。

数据

大家通过以下链接下载数据:

Python packages required

Co-presence pattern analysis

使用step_curve_drawer.py 做共线性分析

  • 代码
python 复制代码
#!/usr/bin/env python

"""
NAME: step_curve_drawer.py
DESCRIPTION: This script is to analyze the co-prsense of multiple species in different categories,
             by drawing step curves.
"""

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
import argparse
import textwrap

def read_args(args):
    # This function is to parse arguments

    parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
                                    description = textwrap.dedent('''\
                                     This program is to do draw step curves to analyze co-presense of multiple species in different groups.
                                     '''),
                                    epilog = textwrap.dedent('''\
                                    examples:step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>
                                    '''))
    parser.add_argument('--abundance_table',
                        nargs = '?',
                        help = 'Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.',
                        type = str,
                        default = None)

    parser.add_argument('--variable',
                        nargs = '?',
                        help = 'Specify the header of the variable in the metadata table you want to assess. For example, \
                        [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].',
                        type = str,
                        default = None)

    parser.add_argument('--minimum_abundance',
                        nargs = '?',
                        help = 'Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default',
                        type = float,
                        default = 0.0)

    parser.add_argument('--species_number',
                        nargs = '?',
                        help = 'Specify the total number of multiple species in the analysis.',
                        type = int)


    parser.add_argument('--output',
                        nargs = '?',
                        help = 'Specify the output figure name.',
                        type = str,
                        default = None)
    parser.add_argument('--palette',
                        nargs = '?',
                        help = 'Input a tab-delimited mapping file where values are group names and keys are color codes.',
                        type = str,
                        default = None)

    return vars(parser.parse_args())

class PandasDealer:
    """
    This is an object for dealing pandas dataframe.
    """

    def __init__(self, df_):

        self.df_ = df_

    def read_csv(self):
        # Ths fucntion will read tab-delimitted file into a pandas dataframe.

        return pd.read_csv(self.df_, sep = '\t', index_col = False, low_memory=False)

    def rotate_df(self):
        # this function is to rotate the metaphlan-style table into tidy dataframe to ease searching work,

        df_ = self.read_csv()
        df_rows_lists = df_.values.tolist()
        rotated_df_dict = {df_.columns[0]: df_.columns[1:]}
        for i in df_rows_lists:
            rotated_df_dict[i[0]] = i[1:]

        rotated_df = pd.DataFrame.from_dict(rotated_df_dict)
        
        return rotated_df

class CopEstimator:

    def __init__(self, sub_df_md):
        self.sub_df_md = sub_df_md # sub_df_md: a subset of dataframe which contains only a group of species one wants to do co-presence analysis.

    def make_copresense_df(self, factor, total_species_nr, threshold = 0.0):
        # factor: the factor you want to assess the category percentage.
        # total_species_nr: specify the total number of species you want to do co-presense analysis.


        rotated_df = PandasDealer(self.sub_df_md)
        rotated_df = rotated_df.rotate_df()
        cols = rotated_df.columns[-total_species_nr: ].to_list() 
        categories = list(set(rotated_df[factor].to_list()))
        

        copresense = []
        cate_name = []
        ratios = []
        for c in categories:
            sub_df = rotated_df[rotated_df[factor] == c]
            species_group_df = sub_df[cols]
            species_group_df = species_group_df.apply(pd.to_numeric)
            species_group_df['total'] = species_group_df[cols].gt(threshold).sum(axis=1)
            for i in range(1, total_species_nr + 1):
                ratio = count_non_zero_rows(species_group_df, i)
                copresense.append(i)
                cate_name.append(c)
                ratios.append(ratio)

        return pd.DataFrame.from_dict({"copresense": copresense,
                                        factor: cate_name,
                                        "percentage": ratios})

def count_non_zero_rows(df_, nr):
    total_rows = len(df_.index)
    
    sub_df = df_[df_['total'] >= nr]
    ratio = len(sub_df.index)/total_rows

    return ratio
    

class VisualTools:
    def __init__(self, processed_df, factor):
        self.processed_df = processed_df
        self.factor = factor

    def step_curves(self, opt_name, palette = None):
        categories = list(set(self.processed_df[self.factor].to_list()))
        if palette:
            palette_dict = {i.rstrip().split('\t')[0]: i.rstrip().split('\t')[1] for i in open(palette).readlines()}
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c, color = palette_dict[c])
        else:
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c)

        plt.title("Number of species in an individual if present")
        plt.xlabel("Percentage")
        plt.ylabel("Co-presense")
        plt.legend(title = self.factor)
        plt.savefig(opt_name, bbox_inches = "tight")


if __name__ == "__main__":

    pars = read_args(sys.argv)
    cop_obj = CopEstimator(pars['abundance_table'])
    p_df = cop_obj.make_copresense_df(pars['variable'], pars['species_number'], pars['minimum_abundance'])
    vis_obj = VisualTools(p_df, pars['variable'])
    vis_obj.step_curves(pars['output'], palette = pars['palette'])
  • 用法
python 复制代码
usage: step_curve_drawer.py [-h] [--abundance_table [ABUNDANCE_TABLE]] [--variable [VARIABLE]] [--minimum_abundance [MINIMUM_ABUNDANCE]] [--species_number [SPECIES_NUMBER]] [--output [OUTPUT]]
                            [--palette [PALETTE]]

This program is to do draw step curves to analyze co-presense of multiple species in different groups.

optional arguments:
  -h, --help            show this help message and exit
  --abundance_table [ABUNDANCE_TABLE]
                        Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.
  --variable [VARIABLE]
                        Specify the header of the variable in the metadata table you want to assess. For example, [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].
  --minimum_abundance [MINIMUM_ABUNDANCE]
                        Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default
  --species_number [SPECIES_NUMBER]
                        Specify the total number of multiple species in the analysis.
  --output [OUTPUT]     Specify the output figure name.
  --palette [PALETTE]   Input a tab-delimited mapping file where values are group names and keys are color codes.

examples:

python step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>

为了演示step_curve_drawer.py的使用,我们将绘制基于metaphlan相对丰度表特定于Segatalla copri (之前称为Prevotella copri )的八个谱系:./data/mpa4_pcopri_abundances_md.tsv的共现模式,这些数据来自MSMNon-MSM 人群。MSMNon-MSM 样本将使用自定义颜色进行标记,颜色分配来自一个颜色映射文件color map file: ./data/copresence_color_map.tsv

bash 复制代码
python step_curve_drawer.py \
  --abundance_table mpa_pcopri_abundances_md.tsv \
  --variable sexual_orientation \
  --species_number 8 \
  --palette copresence_color_map.tsv \
  --output copresence_plot.png
相关推荐
wxl78122712 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
生信摆渡13 小时前
R语言-快速对多个变量取交集
开发语言·数据库·r语言
小尤笔记13 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础
FreedomLeo113 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
biomooc14 小时前
R语言/Rstudio 报错
开发语言·r语言
穆友航15 小时前
PDF内容提取,MinerU使用
数据分析·pdf
EterNity_TiMe_17 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
麦田里的稻草人w17 小时前
【数据分析实战】(一)—— JOJO战力图
数据挖掘·数据分析
Hello World and You21 小时前
R ggplot2 绘图细节 geom_text展示不全 y轴坐标细节 x轴标题
开发语言·r语言
B站计算机毕业设计超人21 小时前
计算机毕业设计SparkStreaming+Kafka新能源汽车推荐系统 汽车数据分析可视化大屏 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习
数据仓库·爬虫·python·数据分析·kafka·数据可视化·推荐算法