文章MSM_metagenomics(五):共现分析

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等)的共现模式。

数据

大家通过以下链接下载数据:

Python packages required

Co-presence pattern analysis

使用step_curve_drawer.py 做共线性分析

  • 代码
python 复制代码
#!/usr/bin/env python

"""
NAME: step_curve_drawer.py
DESCRIPTION: This script is to analyze the co-prsense of multiple species in different categories,
             by drawing step curves.
"""

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
import argparse
import textwrap

def read_args(args):
    # This function is to parse arguments

    parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
                                    description = textwrap.dedent('''\
                                     This program is to do draw step curves to analyze co-presense of multiple species in different groups.
                                     '''),
                                    epilog = textwrap.dedent('''\
                                    examples:step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>
                                    '''))
    parser.add_argument('--abundance_table',
                        nargs = '?',
                        help = 'Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.',
                        type = str,
                        default = None)

    parser.add_argument('--variable',
                        nargs = '?',
                        help = 'Specify the header of the variable in the metadata table you want to assess. For example, \
                        [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].',
                        type = str,
                        default = None)

    parser.add_argument('--minimum_abundance',
                        nargs = '?',
                        help = 'Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default',
                        type = float,
                        default = 0.0)

    parser.add_argument('--species_number',
                        nargs = '?',
                        help = 'Specify the total number of multiple species in the analysis.',
                        type = int)


    parser.add_argument('--output',
                        nargs = '?',
                        help = 'Specify the output figure name.',
                        type = str,
                        default = None)
    parser.add_argument('--palette',
                        nargs = '?',
                        help = 'Input a tab-delimited mapping file where values are group names and keys are color codes.',
                        type = str,
                        default = None)

    return vars(parser.parse_args())

class PandasDealer:
    """
    This is an object for dealing pandas dataframe.
    """

    def __init__(self, df_):

        self.df_ = df_

    def read_csv(self):
        # Ths fucntion will read tab-delimitted file into a pandas dataframe.

        return pd.read_csv(self.df_, sep = '\t', index_col = False, low_memory=False)

    def rotate_df(self):
        # this function is to rotate the metaphlan-style table into tidy dataframe to ease searching work,

        df_ = self.read_csv()
        df_rows_lists = df_.values.tolist()
        rotated_df_dict = {df_.columns[0]: df_.columns[1:]}
        for i in df_rows_lists:
            rotated_df_dict[i[0]] = i[1:]

        rotated_df = pd.DataFrame.from_dict(rotated_df_dict)
        
        return rotated_df

class CopEstimator:

    def __init__(self, sub_df_md):
        self.sub_df_md = sub_df_md # sub_df_md: a subset of dataframe which contains only a group of species one wants to do co-presence analysis.

    def make_copresense_df(self, factor, total_species_nr, threshold = 0.0):
        # factor: the factor you want to assess the category percentage.
        # total_species_nr: specify the total number of species you want to do co-presense analysis.


        rotated_df = PandasDealer(self.sub_df_md)
        rotated_df = rotated_df.rotate_df()
        cols = rotated_df.columns[-total_species_nr: ].to_list() 
        categories = list(set(rotated_df[factor].to_list()))
        

        copresense = []
        cate_name = []
        ratios = []
        for c in categories:
            sub_df = rotated_df[rotated_df[factor] == c]
            species_group_df = sub_df[cols]
            species_group_df = species_group_df.apply(pd.to_numeric)
            species_group_df['total'] = species_group_df[cols].gt(threshold).sum(axis=1)
            for i in range(1, total_species_nr + 1):
                ratio = count_non_zero_rows(species_group_df, i)
                copresense.append(i)
                cate_name.append(c)
                ratios.append(ratio)

        return pd.DataFrame.from_dict({"copresense": copresense,
                                        factor: cate_name,
                                        "percentage": ratios})

def count_non_zero_rows(df_, nr):
    total_rows = len(df_.index)
    
    sub_df = df_[df_['total'] >= nr]
    ratio = len(sub_df.index)/total_rows

    return ratio
    

class VisualTools:
    def __init__(self, processed_df, factor):
        self.processed_df = processed_df
        self.factor = factor

    def step_curves(self, opt_name, palette = None):
        categories = list(set(self.processed_df[self.factor].to_list()))
        if palette:
            palette_dict = {i.rstrip().split('\t')[0]: i.rstrip().split('\t')[1] for i in open(palette).readlines()}
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c, color = palette_dict[c])
        else:
            for c in categories:
                sub_df = self.processed_df[self.processed_df[self.factor] == c]
                plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c)

        plt.title("Number of species in an individual if present")
        plt.xlabel("Percentage")
        plt.ylabel("Co-presense")
        plt.legend(title = self.factor)
        plt.savefig(opt_name, bbox_inches = "tight")


if __name__ == "__main__":

    pars = read_args(sys.argv)
    cop_obj = CopEstimator(pars['abundance_table'])
    p_df = cop_obj.make_copresense_df(pars['variable'], pars['species_number'], pars['minimum_abundance'])
    vis_obj = VisualTools(p_df, pars['variable'])
    vis_obj.step_curves(pars['output'], palette = pars['palette'])
  • 用法
python 复制代码
usage: step_curve_drawer.py [-h] [--abundance_table [ABUNDANCE_TABLE]] [--variable [VARIABLE]] [--minimum_abundance [MINIMUM_ABUNDANCE]] [--species_number [SPECIES_NUMBER]] [--output [OUTPUT]]
                            [--palette [PALETTE]]

This program is to do draw step curves to analyze co-presense of multiple species in different groups.

optional arguments:
  -h, --help            show this help message and exit
  --abundance_table [ABUNDANCE_TABLE]
                        Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.
  --variable [VARIABLE]
                        Specify the header of the variable in the metadata table you want to assess. For example, [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].
  --minimum_abundance [MINIMUM_ABUNDANCE]
                        Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default
  --species_number [SPECIES_NUMBER]
                        Specify the total number of multiple species in the analysis.
  --output [OUTPUT]     Specify the output figure name.
  --palette [PALETTE]   Input a tab-delimited mapping file where values are group names and keys are color codes.

examples:

python step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>

为了演示step_curve_drawer.py的使用,我们将绘制基于metaphlan相对丰度表特定于Segatalla copri (之前称为Prevotella copri )的八个谱系:./data/mpa4_pcopri_abundances_md.tsv的共现模式,这些数据来自MSMNon-MSM 人群。MSMNon-MSM 样本将使用自定义颜色进行标记,颜色分配来自一个颜色映射文件color map file: ./data/copresence_color_map.tsv

bash 复制代码
python step_curve_drawer.py \
  --abundance_table mpa_pcopri_abundances_md.tsv \
  --variable sexual_orientation \
  --species_number 8 \
  --palette copresence_color_map.tsv \
  --output copresence_plot.png
相关推荐
Chef_Chen1 小时前
从0开始学习R语言--Day55--弹性网络
r语言
charlee443 小时前
PandasAI连接LLM进行智能数据分析
ai·数据分析·llm·pandasai·deepseek
Re_Yang098 小时前
数学专业转型数据分析竞争力发展报告
数据挖掘·数据分析
workflower9 小时前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
我要学习别拦我~9 小时前
kaggle分析项目:steam付费游戏数据分析
python·游戏·数据分析
海哥编程11 小时前
Python 数据分析(二):Matplotlib 绘图
python·数据分析·matplotlib
魔力之心1 天前
R study notes[1]
r语言
Watermelo6171 天前
极致的灵活度满足工程美学:用Vue Flow绘制一个完美流程图
前端·javascript·vue.js·数据挖掘·数据分析·流程图·数据可视化
Watermelo6171 天前
Web Worker:让前端飞起来的隐形引擎
前端·javascript·vue.js·数据挖掘·数据分析·node.js·es6
SickeyLee2 天前
BI 系统数据看板全解析:让数据可视化驱动业务决策
信息可视化·数据挖掘·数据分析