【ai_agent】从零写一个agent框架(一)打造最强开放agent编辑框架,拳打dify,脚踩coze

前言

之前我们讲过了想将LLM能力在具体的应用中实践,最好的方法是做成一个agent,具体参考大模型应用

本系列我们就从零写一个agent框架,方便我们构造和运行agent。

coze dify 等agent编排框架探索

动手之前先看看目前比较好的这些agent编排框架。

首先我认为最好的是字节的coze :https://www.coze.com它以bot(agent)为主体,在其上增加了一些RAG,workflow等等功能。并且提供了single和multi两种模式。

用起来很简单,只需要少量的编辑,就能够快速将应用搭建起来。

当然这种设计也导致它的编排能力非常弱,尤其是对于CoT这种场景。它的workflow也不支持嵌入bot,只提供了一些简单节点。多bot的场景只能用multi agent模式,但这个模式也只是简单的编排。做一些复杂操作非常勉强。

但我最喜欢的是它的workflow能嵌workflow,属实是能力无限。

dify: github地址在线能力体验

可以理解为开源,低配版coze

其他有 FlowiseAI,kuafu,Boxcars等等

还有一个比较另类的Stable Diffusion ,我非常喜欢他的ComfyUI,这也算是一种workflow,非常的比较open,且能够导来导入,且不拘一格,可以任意流转。

目标

那我们这个ai_agent框架目标如下:

  1. 编排式agent,不应该拘泥于某一范式来编排agent,而应该是一个开放的能力。这主要是因为在解决复杂问题时固定范式会限制我们的思路。
  2. BaaS Solution 服务和编排分离,基于一个的中间层的协议通信。在应用发布后,只需要调用服务的api即可。
  3. 能力无限 workflow和agent都可以作为一个新的agent的子节点。

架构设计

简略的划分为两个模块,agent服务和webui,一个用来运行agent,一个用来编排agent。

  • webui:用来编排agent的ui界面,编排后的结果是一个执行计划plan。
  • agent serve:agent服务,能够加载各种service(llm,workflow等),并根据plan执行这些service。
  • python_rt: python运行环境,就是说可以直接将py代码作为service执行,以后还会有wasm_rt等等。
  • agent_rt: agent运行时,是调度plan的核心。

快速体验

项目地址 传送门

启动服务

启动需要示例

  • python_rt : 是为了能够远程调用python,并保证一个安全和沙盒环境,版本使用的3.11.9
  • webui : 用的wasm制作的编辑器,需要trunk绑定,trunk安装教程
  • openai:我这里llm主要用的openai,如果你需要llm能力,则需要先设置appkey到环境变量中。
bash 复制代码
// 启动python运行时,我这里直接打包成了docker,python版本3.11.9
docker run -itd -p 50001:50001 wdshihaoren/python_rt:16896997

//运行实例,就是起一个rpc服务,能够运行plan
cd example
cargo run --bin serve

//运行webui
cd webui/server
go run main.go

cd webui
trunk serve 

加载plugin

project->LOAD,从webui/server中加载所有的plugin插件,插件地址,其实就是一堆json,定义插件的视图长啥样。

到这里可以自己拖拽一些节点制作workflow了。

upload plugin

我们这里直接上传一个做好的agent: single agent。将内容粘贴到plan-text-view窗口中,up plugin上传。可以看到所有的流程节点。

执行流程

打开work-flow-view视图,可以看到single agent执行流程非常简单。

  • 注意: 一个流程总是以start节点开始,以end节点结束。
  1. 根据用户输入,调用llm,
  2. 如果需要调用tool,则用python执行tool,然后将结果追加到llm的上线文中。继续调用llm。
  3. 如果不需要执行tool,则流程结束,返回答案answer

debug

点击debug,查看关键流程的执行结果是否符合预期。

至此,一个简单的流程就体验完了。

尾语

我会继续完善这个项目相关的文档,每个模块都会有一篇文章介绍,同时诚邀感兴趣的小伙伴们的参与,一个人工作量有点大。

项目目前刚开始做,还有很多功能没有完善,之后可能会有大的改动。

关于能力无限,其实上面这个workflow可以导出来作为一个workflow被其他的agent调用。可以在workflow->custom_workflow中体验。

如果不想用webui这么复杂的东西,可以直接用rust,引用crate.io上的agent_rtwd_agentlib,然后编码体验。

相关推荐
潜意识起点几秒前
【潜意识Java】javaee中的SpringBoot在Java 开发中的应用与详细分析
java·spring boot·后端
自在的LEE25 分钟前
当 Go 遇上 Windows:15.625ms 的时间更新困局
后端·kubernetes·go
繁川1 小时前
深入理解Spring AOP
java·后端·spring
运维&陈同学3 小时前
【Elasticsearch05】企业级日志分析系统ELK之集群工作原理
运维·开发语言·后端·python·elasticsearch·自动化·jenkins·哈希算法
ZHOUPUYU4 小时前
最新 neo4j 5.26版本下载安装配置步骤【附安装包】
java·后端·jdk·nosql·数据库开发·neo4j·图形数据库
Q_19284999065 小时前
基于Spring Boot的找律师系统
java·spring boot·后端
ZVAyIVqt0UFji6 小时前
go-zero负载均衡实现原理
运维·开发语言·后端·golang·负载均衡
SomeB1oody7 小时前
【Rust自学】4.1. 所有权:栈内存 vs. 堆内存
开发语言·后端·rust
AI人H哥会Java9 小时前
【Spring】Spring的模块架构与生态圈—Spring MVC与Spring WebFlux
java·开发语言·后端·spring·架构
毕设资源大全9 小时前
基于SpringBoot+html+vue实现的林业产品推荐系统【源码+文档+数据库文件+包部署成功+答疑解惑问到会为止】
java·数据库·vue.js·spring boot·后端·mysql·html