pytorch-数据增强

目录

  • [1. Flip翻转](#1. Flip翻转)
  • [2. Rotate旋转](#2. Rotate旋转)
  • [3. scale缩放](#3. scale缩放)
  • [4. crop裁剪](#4. crop裁剪)
  • [5. 总结](#5. 总结)
  • [6. 完整代码](#6. 完整代码)

1. Flip翻转


上图中做了随机水平翻转和随机垂直翻转,翻转完成后转化成tensor

2. Rotate旋转


上图中作了2次旋转第一次旋转角度在-15<0<15范围内,随机出一个角度,第二次旋转角是从90,180,270中random出一个。

3. scale缩放

缩放通过Resize函数实现,注意传入参数宽高为list类型

4. crop裁剪


上图中的RandomCrop就是随机裁剪方法,一般与RandomRotation一起使用。
transforms.Compose类似nn.Sequential,是将各种操作打包成一个操作

5. 总结

数据增加理论上可以扩充出无数张图片数据,但是如果原数据集比较小的话,也不会得到很好的效果,只能改善一些,意思就是说数据增加对机器学习改善比较有限。

6. 完整代码

python 复制代码
import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms

from visdom import Visdom

batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomHorizontalFlip(),
                       transforms.RandomVerticalFlip(),
                       transforms.RandomRotation(15),
                       transforms.RandomRotation([90, 180, 270]),
                       transforms.Resize([32, 32]),
                       transforms.RandomCrop([28, 28]),
                       transforms.ToTensor(),
                       # transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        # transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)

viz = Visdom()

viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
                                                   legend=['loss', 'acc.']))
global_step = 0

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.cuda()

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        global_step += 1
        viz.line([loss.item()], [global_step], win='train_loss', update='append')

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)
        correct += pred.eq(target).float().sum().item()

    viz.line([[test_loss, correct / len(test_loader.dataset)]],
             [global_step], win='test', update='append')
    viz.images(data.view(-1, 1, 28, 28), win='x')
    viz.text(str(pred.detach().cpu().numpy()), win='pred',
             opts=dict(title='pred'))

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
相关推荐
q567315234 分钟前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀5 分钟前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆6 分钟前
数据采集之selenium模拟登录
python·selenium·测试工具
喵~来学编程啦13 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司27 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
狂奔solar41 分钟前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE42 分钟前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习