pytorch-数据增强

目录

  • [1. Flip翻转](#1. Flip翻转)
  • [2. Rotate旋转](#2. Rotate旋转)
  • [3. scale缩放](#3. scale缩放)
  • [4. crop裁剪](#4. crop裁剪)
  • [5. 总结](#5. 总结)
  • [6. 完整代码](#6. 完整代码)

1. Flip翻转


上图中做了随机水平翻转和随机垂直翻转,翻转完成后转化成tensor

2. Rotate旋转


上图中作了2次旋转第一次旋转角度在-15<0<15范围内,随机出一个角度,第二次旋转角是从90,180,270中random出一个。

3. scale缩放

缩放通过Resize函数实现,注意传入参数宽高为list类型

4. crop裁剪


上图中的RandomCrop就是随机裁剪方法,一般与RandomRotation一起使用。
transforms.Compose类似nn.Sequential,是将各种操作打包成一个操作

5. 总结

数据增加理论上可以扩充出无数张图片数据,但是如果原数据集比较小的话,也不会得到很好的效果,只能改善一些,意思就是说数据增加对机器学习改善比较有限。

6. 完整代码

python 复制代码
import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms

from visdom import Visdom

batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomHorizontalFlip(),
                       transforms.RandomVerticalFlip(),
                       transforms.RandomRotation(15),
                       transforms.RandomRotation([90, 180, 270]),
                       transforms.Resize([32, 32]),
                       transforms.RandomCrop([28, 28]),
                       transforms.ToTensor(),
                       # transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        # transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)

viz = Visdom()

viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
                                                   legend=['loss', 'acc.']))
global_step = 0

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.cuda()

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        global_step += 1
        viz.line([loss.item()], [global_step], win='train_loss', update='append')

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)
        correct += pred.eq(target).float().sum().item()

    viz.line([[test_loss, correct / len(test_loader.dataset)]],
             [global_step], win='test', update='append')
    viz.images(data.view(-1, 1, 28, 28), win='x')
    viz.text(str(pred.detach().cpu().numpy()), win='pred',
             opts=dict(title='pred'))

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
相关推荐
Christo320 分钟前
TFS-1996《The Possibilistic C-Means Algorithm: Insights and Recommendations》
人工智能·算法·机器学习
蒋星熠2 小时前
Spring Boot 3.x 微服务架构实战指南
人工智能·spring boot·微服务·性能优化·架构·云计算·量子计算
地平线开发者3 小时前
理想汽车智驾方案介绍专题 3 MoE+Sparse Attention 高效结构解析
人工智能·算法·自动驾驶
lypzcgf3 小时前
Coze源码分析-工作空间-项目开发-前端源码
前端·人工智能·typescript·系统架构·开源软件·react·安全架构
飞哥数智坊6 小时前
实测阿里 Qoder,但我还是失望了
人工智能·ai编程
飞凌嵌入式6 小时前
当门禁系统遇上边缘计算,RK3568核心板如何带来智能化变革
人工智能·嵌入式硬件·嵌入式·边缘计算·飞凌嵌入式
霍格沃兹软件测试开发7 小时前
Dify平台:Agent开发初学者指南
大数据·人工智能·深度学习
IAM四十二8 小时前
基于 Embedding 的本地图像搜索
人工智能·llm·openai
说私域8 小时前
数字经济时代企业营销转型:基于定制开发开源AI智能名片S2B2C商城小程序的探索
人工智能·小程序
你是个什么橙9 小时前
自然语言处理NLP:嵌入层Embedding中input_dim的计算——Tokenizer文本分词和编码
人工智能·自然语言处理·embedding