【线性代数】第七章-二次型

文章目录

  • [一. 基本内容与重要结论](#一. 基本内容与重要结论)
    • [1. 二次型、二次型矩阵](#1. 二次型、二次型矩阵)
    • [2. 标准型与规范型](#2. 标准型与规范型)
    • [3. 惯性指数](#3. 惯性指数)
    • [4. 坐标变换](#4. 坐标变换)
    • [5. 矩阵合同](#5. 矩阵合同)
    • [6. 正定矩阵与正定二次型](#6. 正定矩阵与正定二次型)
  • [二. 主要定理](#二. 主要定理)
    • [1. 二次型变换为标准型的相关定理](#1. 二次型变换为标准型的相关定理)
    • [2. 惯性定理](#2. 惯性定理)
    • [3. 二次型正定的充要条件](#3. 二次型正定的充要条件)

二次型的两大板块要复习整理清楚,一个是标准形,另一个是正定性.

  1. 了解二次型的概念,掌握用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.
  2. 理解二次型的概念,
  • 了解二次型的标准形、规范形等概念
  • 了解惯性定理的条件和结论,掌握用正交变换化二次型为标准形的方法
  • 了解用配方法化二次型为标准形的方法
  1. 理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质。

一. 基本内容与重要结论

1. 二次型、二次型矩阵

注意:二次型规定,aij=aji,也就是二次型的矩阵是对称矩阵。

2. 标准型与规范型

3. 惯性指数

4. 坐标变换

5. 矩阵合同

合同的传递性。

6. 正定矩阵与正定二次型

A如果是正定矩阵则A=A的转置,就是对称矩阵其实。

二. 主要定理

1. 二次型变换为标准型的相关定理

1.1. 二次型的坐标变换


B不一定是对角矩阵。

shell 复制代码
若矩阵A与矩阵B均为n阶方阵,则A与B相似的必要条件为:
1、A与B的特征值相同。
2、λE-A与λE-B等价。
3、tr(A)=tr(B)。 对角元素之和
4、|A|=|B|。

1.2. 任意二次型都可变换为标准型

1.3.二次型的矩阵(就是是实对称矩阵)总可以合同一个对角矩阵

1.4. 实对称矩阵总可以(通过正交变换)化成标准形

能够化成标准型说明了几个信息:

  1. 通过正交变换后的矩阵是对角矩阵;
  2. 变换后的矩阵,与变换前的矩阵相似且合同。

求标准型就是求矩阵的特征值。

2. 惯性定理

合同则有相同规范型,p、q个数不变。

3. 二次型正定的充要条件

(2):说明二次型能化成规范型

相关推荐
优美的赫蒂1 天前
理解欧拉公式
线性代数·算法·数学建模
weixin_428498491 天前
使用HYPRE库并行装配IJ稀疏矩阵
线性代数·矩阵
THe CHallEnge of THe BrAve2 天前
工业相机中CCM使能参数-色彩校正矩阵
数码相机·线性代数·矩阵
该怎么办呢3 天前
webgl入门实例-11模型矩阵 (Model Matrix)基本概念
线性代数·矩阵·webgl
海码0073 天前
【Hot100】 73. 矩阵置零
c++·线性代数·算法·矩阵·hot100
烟锁池塘柳03 天前
齐次坐标系下的变换矩阵
线性代数·数学建模·矩阵
蔗理苦3 天前
2025-04-18 李沐深度学习3 —— 线性代数
人工智能·深度学习·线性代数
电气外传3 天前
小小矩阵设计
线性代数·矩阵
爱的叹息3 天前
软考高级信息系统项目管理师的【干系人参与度评估矩阵】详解
线性代数·矩阵
transformer_WSZ4 天前
线性代数-矩阵的秩
线性代数·矩阵