LeetCode | LCR 126.斐波那契数

斐波那契数是经典的递归解法,其定义为F(n)=F(n-1)+F(n-2),但是对于较大的𝑛,这种递归方法会非常慢。因为每次计算fib(n)时,它会重复计算许多子问题。例如,计算fib(5) 会计算fib(3) 两次,计算fib(2)三次,等等。这导致了大量的重复计算,时间复杂度为 O ( 2 n ) O(2^n) O(2n)。可以考虑滚动数组的思想优化算法效率,这种只需要遍历一次数组且不需要额外的变量,时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

python 复制代码
class Solution(object):
    def fib(self, n):  # 递归解法
        """
        :type n: int
        :rtype: int
        """
        if n == 0:
            return 0
        if n == 1:
            return 1
        return self.fib(n - 1) + self.fib(n - 2)

    def fib(self, n):  # 滚动数组
        a = 0
        b = 1
        if n == 0:
            return 0
        if n == 1:
            return 1
        ans = a + b
        while n > 2:
            a = b
            b = ans
            ans = a + b
            n -= 1
        return ans
        
    def fib(self, n: int) -> int:  # 滚动数组规范化写法
        MOD = 10 ** 9 + 7
        if n < 2:
            return n
        p, q, r = 0, 0, 1
        for i in range(2, n + 1):
            p = q
            q = r
            r = (p + q) % MOD
        return r

看了题解滚动数组的方法其实还可以再优化,也就是用矩阵快速幂的方法降低时间复杂度

python 复制代码
class Solution:
    def fib(self, n: int) -> int:
        MOD = 10 ** 9 + 7
        if n < 2:
            return n

        def multiply(a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
            c = [[0, 0], [0, 0]]
            for i in range(2):
                for j in range(2):
                    c[i][j] = (a[i][0] * b[0][j] + a[i][1] * b[1][j]) % MOD
            return c

        def matrix_pow(a: List[List[int]], n: int) -> List[List[int]]:
            ret = [[1, 0], [0, 1]]
            while n > 0:
                if n & 1:
                    ret = multiply(ret, a)
                n >>= 1
                a = multiply(a, a)
            return ret

        res = matrix_pow([[1, 1], [1, 0]], n - 1)
        return res[0][0]
相关推荐
Wnq100729 分钟前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
天上路人2 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
好吃的肘子2 小时前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
汉克老师2 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
sz66cm3 小时前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法
緈福的街口3 小时前
【leetcode】94. 二叉树的中序遍历
算法·leetcode
小刘要努力呀!3 小时前
嵌入式开发学习(第二阶段 C语言基础)
c语言·学习·算法
野曙4 小时前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大
Codeking__4 小时前
”一维前缀和“算法原理及模板
数据结构·算法
休息一下接着来4 小时前
C++ 条件变量与线程通知机制:std::condition_variable
开发语言·c++·算法