LeetCode | LCR 126.斐波那契数

斐波那契数是经典的递归解法,其定义为F(n)=F(n-1)+F(n-2),但是对于较大的𝑛,这种递归方法会非常慢。因为每次计算fib(n)时,它会重复计算许多子问题。例如,计算fib(5) 会计算fib(3) 两次,计算fib(2)三次,等等。这导致了大量的重复计算,时间复杂度为 O ( 2 n ) O(2^n) O(2n)。可以考虑滚动数组的思想优化算法效率,这种只需要遍历一次数组且不需要额外的变量,时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

python 复制代码
class Solution(object):
    def fib(self, n):  # 递归解法
        """
        :type n: int
        :rtype: int
        """
        if n == 0:
            return 0
        if n == 1:
            return 1
        return self.fib(n - 1) + self.fib(n - 2)

    def fib(self, n):  # 滚动数组
        a = 0
        b = 1
        if n == 0:
            return 0
        if n == 1:
            return 1
        ans = a + b
        while n > 2:
            a = b
            b = ans
            ans = a + b
            n -= 1
        return ans
        
    def fib(self, n: int) -> int:  # 滚动数组规范化写法
        MOD = 10 ** 9 + 7
        if n < 2:
            return n
        p, q, r = 0, 0, 1
        for i in range(2, n + 1):
            p = q
            q = r
            r = (p + q) % MOD
        return r

看了题解滚动数组的方法其实还可以再优化,也就是用矩阵快速幂的方法降低时间复杂度

python 复制代码
class Solution:
    def fib(self, n: int) -> int:
        MOD = 10 ** 9 + 7
        if n < 2:
            return n

        def multiply(a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
            c = [[0, 0], [0, 0]]
            for i in range(2):
                for j in range(2):
                    c[i][j] = (a[i][0] * b[0][j] + a[i][1] * b[1][j]) % MOD
            return c

        def matrix_pow(a: List[List[int]], n: int) -> List[List[int]]:
            ret = [[1, 0], [0, 1]]
            while n > 0:
                if n & 1:
                    ret = multiply(ret, a)
                n >>= 1
                a = multiply(a, a)
            return ret

        res = matrix_pow([[1, 1], [1, 0]], n - 1)
        return res[0][0]
相关推荐
知来者逆19 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊23 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北24 分钟前
力扣-160.相交链表
算法·leetcode·链表
爱研究的小陈1 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing1 小时前
二叉树的最大宽度计算
算法·面试
BB_CC_DD2 小时前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
梁下轻语的秋缘3 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV3 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
mit6.8244 小时前
[贪心_7] 最优除法 | 跳跃游戏 II | 加油站
数据结构·算法·leetcode
keep intensify4 小时前
通讯录完善版本(详细讲解+源码)
c语言·开发语言·数据结构·算法