【线性代数】第六章:特征值与特征向量

文章目录

  • [一. 基本内容与重要结论](#一. 基本内容与重要结论)
    • [1. 特征值、特征向量、特征方程的概念](#1. 特征值、特征向量、特征方程的概念)
    • [2. 矩阵相似](#2. 矩阵相似)
  • [二. 重要定理](#二. 重要定理)
    • [1. 特征向量的有限次变换,还是特征向量](#1. 特征向量的有限次变换,还是特征向量)
    • [2. 特征值与特征矩阵的关系](#2. 特征值与特征矩阵的关系)
    • [3. 特征值与特征向量的相关性](#3. 特征值与特征向量的相关性)
    • [4. 相似则有相同的特征值(只是必要条件)](#4. 相似则有相同的特征值(只是必要条件))
    • [4.1. 相似的四个必要条件](#4.1. 相似的四个必要条件)
    • [5. 矩阵对角化相关定理](#5. 矩阵对角化相关定理)
      • [5.1. 可对角化的充要条件](#5.1. 可对角化的充要条件)
      • [5.2. 实对称矩阵必可对角化](#5.2. 实对称矩阵必可对角化)
    • [6. **Schmidt**正交化方法](#6. Schmidt正交化方法)

本章要求

  1. 要理解特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值、特征向量的方法.
  2. 要理解矩阵相似的概念,掌握相似矩阵的性质,搞清矩阵能相似对角化的条件,掌握将矩阵化为相似对角矩阵的方法.
  3. 要熟悉实对称矩阵特征值、特征向量的特殊性质,掌握用正交矩阵化实对称矩阵为对角矩阵的方法.

一. 基本内容与重要结论

1. 特征值、特征向量、特征方程的概念

跟齐次线性方程组结合 => 先求特征值然后再求特征向量

2. 矩阵相似

相似特性:

二. 重要定理

注意:每个特征值都会对应一个特征方程,通过特征方程来解对应特征值的特征向量。

1. 特征向量的有限次变换,还是特征向量

2. 特征值与特征矩阵的关系

3. 特征值与特征向量的相关性

4. 相似则有相同的特征值(只是必要条件)

4.1. 相似的四个必要条件

sql 复制代码
若矩阵A与矩阵B均为n阶方阵,则A与B相似的必要条件为:
1、A与B的特征值相同。
2、λE-A与λE-B等价。
3、tr(A)=tr(B)。 对角元素之和
4、|A|=|B|。

参考:矩阵相似的四个必要条件及性质证明

5. 矩阵对角化相关定理

5.1. 可对角化的充要条件

每个特征值,该特征值的重数=其线性无关向量个数(因为每个特征值都会对应一个矩阵)。

5.2. 实对称矩阵必可对角化

如果两个实对称的矩阵的特征值相同,则说明两个矩阵相似。

根据实对称矩阵必能对角化+矩阵的对称性,传递性,能够说明,以上结论。

6. Schmidt正交化方法

相关推荐
无风听海19 小时前
神经网络之奇异值分解
神经网络·线性代数·机器学习
西西弗Sisyphus1 天前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 奇异值在哪里
线性代数·矩阵·奇异值分解·线程方程组
小蜜蜂爱编程1 天前
行列式的展开
线性代数
郝学胜-神的一滴1 天前
计算机图形中的法线矩阵:深入理解与应用
开发语言·程序人生·线性代数·算法·机器学习·矩阵·个人开发
西西弗Sisyphus1 天前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 计算顺序 旋转→拉伸→旋转
线性代数·矩阵·奇异值分解·矩阵求逆
唯道行1 天前
计算机图形学·9 几何学
人工智能·线性代数·计算机视觉·矩阵·几何学·计算机图形学
粉色挖掘机1 天前
矩阵在密码学的应用——希尔密码详解
线性代数·算法·机器学习·密码学
西西弗Sisyphus2 天前
线性代数 - 正交矩阵
线性代数·矩阵·线性方程组·正交矩阵·lu分解
qiao若huan喜2 天前
7、webgl 基本概念 + 前置数学知识点(向量 + 矩阵)
线性代数·矩阵·webgl
haogexiaole2 天前
余弦相似度、矩阵分解、深度学习物品的复杂、非线性特征
深度学习·线性代数·矩阵