生成对抗网络——GAN深度卷积实现(代码+理解)

++本篇博客为 上篇博客的 另一个实现版本,训练流程相同,所以只实现代码,感兴趣可以跳转看一下。++

生成对抗网络---GAN(代码+理解)

http://t.csdnimg.cn/HDfLOhttp://t.csdnimg.cn/HDfLO


目录

一、GAN深度卷积实现

[1. 模型结构](#1. 模型结构)

(1)生成器(Generator)

(2)判别器(Discriminator)

[2. 代码实现](#2. 代码实现)

[3. 运行结果展示](#3. 运行结果展示)

二、学习中产生的疑问,及文心一言回答

[1. 模型初始化](#1. 模型初始化)

[2. 模型训练时](#2. 模型训练时)

[3. 优化器定义](#3. 优化器定义)

[4. 训练数据](#4. 训练数据)

[5. 模型结构](#5. 模型结构)

(1)生成器

(2)判别器


一、GAN深度卷积实现

1. 模型结构

(1)生成器(Generator)
(2)判别器(Discriminator)

2. 代码实现

python 复制代码
import torch
import torch.nn as nn
import argparse
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets
import numpy as np


parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

# 加载数据
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./others/",
        train=False,
        download=False,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02) # 给定均值和标准差的正态分布N(mean,std)中生成值
        torch.nn.init.constant_(m.bias.data, 0.0)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.init_size = opt.img_size // 4  # 原为28*28,现为32*32,两边各多了2
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),    # 调整数据的分布,使其 更适合于 下一层的 激活函数或学习
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )

    def forward(self, z):
        out = self.l1(z)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),
                     nn.LeakyReLU(0.2, inplace=True),
                     nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.model = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )
        # 下采样(图片进行 4次卷积操作,变为ds_size * ds_size尺寸大小)
        ds_size = opt.img_size // 2 ** 4
        self.adv_layer = nn.Sequential(
            nn.Linear(128 * ds_size ** 2, 1),
            nn.Sigmoid()
        )

    def forward(self, img):
        out = self.model(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        return validity

# 实例化
generator = Generator()
discriminator = Discriminator()

# 初始化参数
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

# 交叉熵损失函数
adversarial_loss = torch.nn.BCELoss()

def gen_img_plot(model, epoch, text_input):
    prediction = np.squeeze(model(text_input).detach().cpu().numpy()[:16])
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow((prediction[i] + 1) / 2)
        plt.axis('off')
    plt.show()

# ----------
#  Training
# ----------
D_loss_ = []  # 记录训练过程中判别器的损失
G_loss_ = []  # 记录训练过程中生成器的损失
for epoch in range(opt.n_epochs):
    # 初始化损失值
    D_epoch_loss = 0
    G_epoch_loss = 0
    count = len(dataloader)  # 返回批次数
    for i, (imgs, _) in enumerate(dataloader):
        valid = torch.ones(imgs.shape[0], 1)
        fake = torch.zeros(imgs.shape[0], 1)

        # -----------------
        #  Train Generator
        # -----------------
        optimizer_G.zero_grad()
        z = torch.randn(imgs.shape[0], opt.latent_dim)
        gen_imgs = generator(z)
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)
        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------
        optimizer_D.zero_grad()
        real_loss = adversarial_loss(discriminator(imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        # batches_done = epoch * len(dataloader) + i
        # if batches_done % opt.sample_interval == 0:
        #     save_image(gen_imgs.data[:25], "others/images/%d.png" % batches_done, nrow=5, normalize=True)

        # 累计每一个批次的loss
        with torch.no_grad():
            D_epoch_loss += d_loss
            G_epoch_loss += g_loss

        # 求平均损失
    with torch.no_grad():
        D_epoch_loss /= count
        G_epoch_loss /= count
        D_loss_.append(D_epoch_loss.item())
        G_loss_.append(G_epoch_loss.item())

        text_input = torch.randn(opt.batch_size, opt.latent_dim)
        gen_img_plot(generator, epoch, text_input)


x = [epoch + 1 for epoch in range(opt.n_epochs)]
plt.figure()
plt.plot(x, G_loss_, 'r')
plt.plot(x, D_loss_, 'b')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['G_loss','D_loss'])
plt.show()

3. 运行结果展示

二、学习中产生的疑问,及文心一言回答

1. 模型初始化

函数 weights_init_normal 用于初始化 模型参数,为什么要 以 均值和标准差 的正态分布中采样的数 为标准?

2. 模型训练时

这里"d_loss = (real_loss + fake_loss) / 2" 中的 "/ 2" 操作,在 实际训练中 有什么作用?


由(real_loss + fake_loss) / 2的 得到 的 d_loss 与(real_loss+fake_loss)得到的 d_loss 进行 回溯,两者结果会 有什么不同吗?

3. 优化器定义

设置 betas=(opt.b1, opt.b2) 有什么 实际的作用?通俗易懂的讲一下


betas=(opt.b1, opt.b2) 是怎样 更新学习率的?

4. 训练数据

这里我们用的data为 MNIST,为什么img_size设置为 32,不是 28?

5. 模型结构

(1)生成器

解释一下为什么是"Upsample, Conv2d, BatchNorm2d, LeakyReLU "这种顺序?


(2)判别器

模型的 基本 运算步骤是什么?其中为什么需要 "Dropout2d( p=0.25, inplace=False)"这一步?


关于"ds_size" 和 "128 * ds_size ** 2"的实际意义?


后续更新 GAN的其他模型结构。

相关推荐
余生H5 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
果冻人工智能24 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工25 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz27 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学33 分钟前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤36 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭39 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~40 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类