生成对抗网络——GAN深度卷积实现(代码+理解)

++本篇博客为 上篇博客的 另一个实现版本,训练流程相同,所以只实现代码,感兴趣可以跳转看一下。++

生成对抗网络---GAN(代码+理解)

http://t.csdnimg.cn/HDfLOhttp://t.csdnimg.cn/HDfLO


目录

一、GAN深度卷积实现

[1. 模型结构](#1. 模型结构)

(1)生成器(Generator)

(2)判别器(Discriminator)

[2. 代码实现](#2. 代码实现)

[3. 运行结果展示](#3. 运行结果展示)

二、学习中产生的疑问,及文心一言回答

[1. 模型初始化](#1. 模型初始化)

[2. 模型训练时](#2. 模型训练时)

[3. 优化器定义](#3. 优化器定义)

[4. 训练数据](#4. 训练数据)

[5. 模型结构](#5. 模型结构)

(1)生成器

(2)判别器


一、GAN深度卷积实现

1. 模型结构

(1)生成器(Generator)
(2)判别器(Discriminator)

2. 代码实现

python 复制代码
import torch
import torch.nn as nn
import argparse
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets
import numpy as np


parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

# 加载数据
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./others/",
        train=False,
        download=False,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02) # 给定均值和标准差的正态分布N(mean,std)中生成值
        torch.nn.init.constant_(m.bias.data, 0.0)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.init_size = opt.img_size // 4  # 原为28*28,现为32*32,两边各多了2
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),    # 调整数据的分布,使其 更适合于 下一层的 激活函数或学习
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )

    def forward(self, z):
        out = self.l1(z)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),
                     nn.LeakyReLU(0.2, inplace=True),
                     nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.model = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )
        # 下采样(图片进行 4次卷积操作,变为ds_size * ds_size尺寸大小)
        ds_size = opt.img_size // 2 ** 4
        self.adv_layer = nn.Sequential(
            nn.Linear(128 * ds_size ** 2, 1),
            nn.Sigmoid()
        )

    def forward(self, img):
        out = self.model(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        return validity

# 实例化
generator = Generator()
discriminator = Discriminator()

# 初始化参数
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

# 交叉熵损失函数
adversarial_loss = torch.nn.BCELoss()

def gen_img_plot(model, epoch, text_input):
    prediction = np.squeeze(model(text_input).detach().cpu().numpy()[:16])
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow((prediction[i] + 1) / 2)
        plt.axis('off')
    plt.show()

# ----------
#  Training
# ----------
D_loss_ = []  # 记录训练过程中判别器的损失
G_loss_ = []  # 记录训练过程中生成器的损失
for epoch in range(opt.n_epochs):
    # 初始化损失值
    D_epoch_loss = 0
    G_epoch_loss = 0
    count = len(dataloader)  # 返回批次数
    for i, (imgs, _) in enumerate(dataloader):
        valid = torch.ones(imgs.shape[0], 1)
        fake = torch.zeros(imgs.shape[0], 1)

        # -----------------
        #  Train Generator
        # -----------------
        optimizer_G.zero_grad()
        z = torch.randn(imgs.shape[0], opt.latent_dim)
        gen_imgs = generator(z)
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)
        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------
        optimizer_D.zero_grad()
        real_loss = adversarial_loss(discriminator(imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        # batches_done = epoch * len(dataloader) + i
        # if batches_done % opt.sample_interval == 0:
        #     save_image(gen_imgs.data[:25], "others/images/%d.png" % batches_done, nrow=5, normalize=True)

        # 累计每一个批次的loss
        with torch.no_grad():
            D_epoch_loss += d_loss
            G_epoch_loss += g_loss

        # 求平均损失
    with torch.no_grad():
        D_epoch_loss /= count
        G_epoch_loss /= count
        D_loss_.append(D_epoch_loss.item())
        G_loss_.append(G_epoch_loss.item())

        text_input = torch.randn(opt.batch_size, opt.latent_dim)
        gen_img_plot(generator, epoch, text_input)


x = [epoch + 1 for epoch in range(opt.n_epochs)]
plt.figure()
plt.plot(x, G_loss_, 'r')
plt.plot(x, D_loss_, 'b')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['G_loss','D_loss'])
plt.show()

3. 运行结果展示

二、学习中产生的疑问,及文心一言回答

1. 模型初始化

函数 weights_init_normal 用于初始化 模型参数,为什么要 以 均值和标准差 的正态分布中采样的数 为标准?

2. 模型训练时

这里"d_loss = (real_loss + fake_loss) / 2" 中的 "/ 2" 操作,在 实际训练中 有什么作用?


由(real_loss + fake_loss) / 2的 得到 的 d_loss 与(real_loss+fake_loss)得到的 d_loss 进行 回溯,两者结果会 有什么不同吗?

3. 优化器定义

设置 betas=(opt.b1, opt.b2) 有什么 实际的作用?通俗易懂的讲一下


betas=(opt.b1, opt.b2) 是怎样 更新学习率的?

4. 训练数据

这里我们用的data为 MNIST,为什么img_size设置为 32,不是 28?

5. 模型结构

(1)生成器

解释一下为什么是"Upsample, Conv2d, BatchNorm2d, LeakyReLU "这种顺序?


(2)判别器

模型的 基本 运算步骤是什么?其中为什么需要 "Dropout2d( p=0.25, inplace=False)"这一步?


关于"ds_size" 和 "128 * ds_size ** 2"的实际意义?


后续更新 GAN的其他模型结构。

相关推荐
理智的煎蛋2 分钟前
CentOS/Ubuntu安装显卡驱动与GPU压力测试
大数据·人工智能·ubuntu·centos·gpu算力
知来者逆11 分钟前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
IT_陈寒12 分钟前
Java性能优化:10个让你的Spring Boot应用提速300%的隐藏技巧
前端·人工智能·后端
Android出海15 分钟前
Android 15重磅升级:16KB内存页机制详解与适配指南
android·人工智能·新媒体运营·产品运营·内容运营
cyyt17 分钟前
深度学习周报(9.1~9.7)
人工智能·深度学习
聚客AI20 分钟前
🌸万字解析:大规模语言模型(LLM)推理中的Prefill与Decode分离方案
人工智能·llm·掘金·日新计划
max50060022 分钟前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
麦麦麦造35 分钟前
国外网友的3个步骤,实现用Prompt来写Prompt!超简单!
人工智能
闲看云起1 小时前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
小麦矩阵系统永久免费1 小时前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵