生成对抗网络——GAN深度卷积实现(代码+理解)

++本篇博客为 上篇博客的 另一个实现版本,训练流程相同,所以只实现代码,感兴趣可以跳转看一下。++

生成对抗网络---GAN(代码+理解)

http://t.csdnimg.cn/HDfLOhttp://t.csdnimg.cn/HDfLO


目录

一、GAN深度卷积实现

[1. 模型结构](#1. 模型结构)

(1)生成器(Generator)

(2)判别器(Discriminator)

[2. 代码实现](#2. 代码实现)

[3. 运行结果展示](#3. 运行结果展示)

二、学习中产生的疑问,及文心一言回答

[1. 模型初始化](#1. 模型初始化)

[2. 模型训练时](#2. 模型训练时)

[3. 优化器定义](#3. 优化器定义)

[4. 训练数据](#4. 训练数据)

[5. 模型结构](#5. 模型结构)

(1)生成器

(2)判别器


一、GAN深度卷积实现

1. 模型结构

(1)生成器(Generator)
(2)判别器(Discriminator)

2. 代码实现

python 复制代码
import torch
import torch.nn as nn
import argparse
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets
import numpy as np


parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

# 加载数据
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./others/",
        train=False,
        download=False,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02) # 给定均值和标准差的正态分布N(mean,std)中生成值
        torch.nn.init.constant_(m.bias.data, 0.0)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.init_size = opt.img_size // 4  # 原为28*28,现为32*32,两边各多了2
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),    # 调整数据的分布,使其 更适合于 下一层的 激活函数或学习
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )

    def forward(self, z):
        out = self.l1(z)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),
                     nn.LeakyReLU(0.2, inplace=True),
                     nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.model = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )
        # 下采样(图片进行 4次卷积操作,变为ds_size * ds_size尺寸大小)
        ds_size = opt.img_size // 2 ** 4
        self.adv_layer = nn.Sequential(
            nn.Linear(128 * ds_size ** 2, 1),
            nn.Sigmoid()
        )

    def forward(self, img):
        out = self.model(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        return validity

# 实例化
generator = Generator()
discriminator = Discriminator()

# 初始化参数
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

# 交叉熵损失函数
adversarial_loss = torch.nn.BCELoss()

def gen_img_plot(model, epoch, text_input):
    prediction = np.squeeze(model(text_input).detach().cpu().numpy()[:16])
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow((prediction[i] + 1) / 2)
        plt.axis('off')
    plt.show()

# ----------
#  Training
# ----------
D_loss_ = []  # 记录训练过程中判别器的损失
G_loss_ = []  # 记录训练过程中生成器的损失
for epoch in range(opt.n_epochs):
    # 初始化损失值
    D_epoch_loss = 0
    G_epoch_loss = 0
    count = len(dataloader)  # 返回批次数
    for i, (imgs, _) in enumerate(dataloader):
        valid = torch.ones(imgs.shape[0], 1)
        fake = torch.zeros(imgs.shape[0], 1)

        # -----------------
        #  Train Generator
        # -----------------
        optimizer_G.zero_grad()
        z = torch.randn(imgs.shape[0], opt.latent_dim)
        gen_imgs = generator(z)
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)
        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------
        optimizer_D.zero_grad()
        real_loss = adversarial_loss(discriminator(imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        # batches_done = epoch * len(dataloader) + i
        # if batches_done % opt.sample_interval == 0:
        #     save_image(gen_imgs.data[:25], "others/images/%d.png" % batches_done, nrow=5, normalize=True)

        # 累计每一个批次的loss
        with torch.no_grad():
            D_epoch_loss += d_loss
            G_epoch_loss += g_loss

        # 求平均损失
    with torch.no_grad():
        D_epoch_loss /= count
        G_epoch_loss /= count
        D_loss_.append(D_epoch_loss.item())
        G_loss_.append(G_epoch_loss.item())

        text_input = torch.randn(opt.batch_size, opt.latent_dim)
        gen_img_plot(generator, epoch, text_input)


x = [epoch + 1 for epoch in range(opt.n_epochs)]
plt.figure()
plt.plot(x, G_loss_, 'r')
plt.plot(x, D_loss_, 'b')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['G_loss','D_loss'])
plt.show()

3. 运行结果展示

二、学习中产生的疑问,及文心一言回答

1. 模型初始化

函数 weights_init_normal 用于初始化 模型参数,为什么要 以 均值和标准差 的正态分布中采样的数 为标准?

2. 模型训练时

这里"d_loss = (real_loss + fake_loss) / 2" 中的 "/ 2" 操作,在 实际训练中 有什么作用?


由(real_loss + fake_loss) / 2的 得到 的 d_loss 与(real_loss+fake_loss)得到的 d_loss 进行 回溯,两者结果会 有什么不同吗?

3. 优化器定义

设置 betas=(opt.b1, opt.b2) 有什么 实际的作用?通俗易懂的讲一下


betas=(opt.b1, opt.b2) 是怎样 更新学习率的?

4. 训练数据

这里我们用的data为 MNIST,为什么img_size设置为 32,不是 28?

5. 模型结构

(1)生成器

解释一下为什么是"Upsample, Conv2d, BatchNorm2d, LeakyReLU "这种顺序?


(2)判别器

模型的 基本 运算步骤是什么?其中为什么需要 "Dropout2d( p=0.25, inplace=False)"这一步?


关于"ds_size" 和 "128 * ds_size ** 2"的实际意义?


后续更新 GAN的其他模型结构。

相关推荐
是店小二呀14 分钟前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~18 分钟前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记21 分钟前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪21 分钟前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能
victory043124 分钟前
hello_agent第九章总结
人工智能·agent
小徐xxx24 分钟前
ResNet介绍
深度学习·resnet·残差连接
骇城迷影25 分钟前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
Leoobai27 分钟前
当我花30分钟让AI占领了我的树莓派
人工智能
AI资源库30 分钟前
Remotion 一个用 React 程序化制作视频的框架
人工智能·语言模型·音视频
Web3VentureView33 分钟前
SYNBO Protocol AMA回顾:下一个起点——什么将真正推动比特币重返10万美元?
大数据·人工智能·金融·web3·区块链