Pentest Muse:一款专为网络安全人员设计的AI助手

关于Pentest Muse

Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手,该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外,Pentest Muse甚至还能够执行命令行代码并以迭代方式解决复杂的问题和任务。

简而言之,我们只需要把想做的事情告诉Pentest Muse,它就能够帮助我们完成想要的安全测试与评估任务。

Pentest Muse Web应用程序

除了命令行接口之外,该工具还提供了Web应用程序版本,广大研究人员可以直接点击【这里】访问Pentest Muse最新的线上版本。

工具要求

annotated-types==0.6.0

anyio==3.7.1

certifi==2023.11.17

distro==1.8.0

h11==0.14.0

httpcore==1.0.2

httpx==0.25.2

idna==3.6

markdown-it-py==3.0.0

mdurl==0.1.2

openai==1.3.5

prompt-toolkit==3.0.41

pydantic==2.5.2

pydantic_core==2.14.5

Pygments==2.17.2

python-dotenv==1.0.0

rich==13.7.0

setuptools==68.0.0

sniffio==1.3.0

tqdm==4.66.1

typing_extensions==4.8.0

wcwidth==0.2.12

wheel==0.41.2

pyfiglet

requests==2.31.0

websocket-client==1.7.0

工具安装

由于该工具基于Python 3.12开发,因此我们首先需要在本地设备上安装并配置好Python 3.12+环境。

接下来,广大研究人员可以直接使用下列命令将该项目源码克隆至本地:

复制代码
git clone https://github.com/pentestmuse-ai/PentestMuse

然后切换到项目目录中,使用pip工具和项目提供的requirements.txt安装该工具所需的其他依赖组件:

复制代码
cd PentestMuse

pip install -r requirements.txt

除此之外,我们也可以将项目代码克隆至本地后,将Pentest Muse以Python包的形式安装:

复制代码
pip install .

工具运行

聊天模式(默认)

在聊天模式中,我们可以直接与Pentest Muse聊天,并请它帮我们头脑风暴、编写Payload或对代码进行安全分析。参考命令如下:

复制代码
python run_app.py

复制代码
pmuse

代理模式(Beta)

我们也可以让Pentest Muse使用代理模式来执行操作。在代理模式下,Pentest Muse能够帮助我们完成一系列简单的任务,例如"帮我们在url为xxx的目标上执行SQL注入测试"。下列命令可以直接以代理模式启动Pentest Muse:

复制代码
python run_app.py agent

复制代码
pmuse agent

语言模型选择

API管理

www.pentestmuse.ai/signup上注册后,我们就可以使用Pentest Muse来管理API了,创建一个账号,打开Pentest Muse的命令行接口,程序将会提示我们进行登录。

OpenAI API密钥

除此之外,我们还可以选择使用自己的OpenAI API密钥。我们可以直接在启动Pentest Muse脚本时,添加下列命令行参数选项即可:

复制代码
--openai-api-key=[your openai api key

许可证协议

本项目的开发与发布遵循MIT开源许可协议。

项目地址

Pentest Muse :【GitHub传送门

参考资料

Pentest Muse

相关推荐
十里-8 分钟前
前端监控1-数据上报
前端·安全
K***728421 分钟前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
Chat_zhanggong3451 小时前
K4A8G165WC-BITD产品推荐
人工智能·嵌入式硬件·算法
霍格沃兹软件测试开发1 小时前
Playwright MCP浏览器自动化指南:让AI精准理解你的命令
运维·人工智能·自动化
强化学习与机器人控制仿真1 小时前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习
网易智企2 小时前
智能玩具新纪元:一个AI能力底座开启创新“加速度”
人工智能·microsoft
咚咚王者2 小时前
人工智能之数据分析 numpy:第十二章 数据持久化
人工智能·数据分析·numpy
沛沛老爹2 小时前
AI应用入门之LangChain中SerpAPI、LLM-Math等Tools的集成方法实践
人工智能·langchain·llm·ai入门·serpapi
roman_日积跬步-终至千里2 小时前
【强化学习基础(5)】策略搜索与学徒学习:从专家行为中学习加速学习过程
人工智能
杭州泽沃电子科技有限公司4 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测