【代码随想录算法训练Day38】LeetCode 509.斐波纳契数、LeetCode 76.爬楼梯、LeetCode 746. 使用最小花费爬楼梯

Day38 动态规划

又开始了新的章节,有了点难度的感觉。。

动态规划五部曲:

确定dp数组(dp table)以及下标的含义

确定递推公式

dp数组如何初始化

确定遍历顺序

举例推导dp数组

这些以后慢慢参透

LeetCode 509.斐波纳契数

最简单的动态规划,甚至不需要动态规划就可以解决的问题。初始状态、递推公式都已经有了,这道题就很简单了。

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if(n<=1) return n;
        vector<int> dp(n+1);
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<=n;i++)
            dp[i]=dp[i-1]+dp[i-2];
        return dp[n];

    }
};

LeetCode 76.爬楼梯

爬楼梯的关键是递推公式的推导,如果能推导出来每一层是由前两层走上来的,那么这道题几乎就是一个变种的斐波纳契数列了。

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if(n<=1) return n;
        vector<int> dp(n+1);
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++)
            dp[i]=dp[i-1]+dp[i-2];
        return dp[n];
    }
};

LeetCode 746. 使用最小花费爬楼梯

dp数组的含义:到达i位置的花费为dp[i]

递推公式:dp[i-1]+cost[i-1]和dp[i-2]+cost[i-2]的最小值

初始化:dp[0]=dp[1]=0

遍历顺序:正序

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.size();i++)
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        return dp[cost.size()];
    }
};

动态规划继续加油!

相关推荐
算AI17 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh19 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之20 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓20 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf20 小时前
图论----拓扑排序
算法·图论
我要昵称干什么20 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ21 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl21 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦21 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku21 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯