Day13—大语言模型

定义

大语言模型(Large Language Models)是一种基于深度学习的自然语言处理(NLP)模型,用于处理和生成人类语言文本。

一、认识NLP

什么是NLP

​ NLP(Natural Language Processing),即"自然语言处理",主要研究使用计算机来处理、理解及运用人类语言的各种理论和方法,属于人工智能的一个重要研究方向。

​ 简单来说,NLP就是如何让计算机理解人类语言。

NLP的主要研究方向

​ NLP是一个庞大的技术体系,研究方向主要包括机器翻译、信息检索、文档分类、问答系统、自动摘要、文本挖掘、知识图谱、语音识别、语音合成等。

​ 相较于CNN重点应用于计算机视觉领域,RNN则更多地应用于NLP方向。

word2vec

word2vec介绍

​ word2vec是一种基于神经网络的词嵌入技术,通过训练神经网络得到一个关于输入X和输出Y之间的语言模型,获取训练好的神经网络权重,这个权重是用来对输入词汇X进行向量化表示的。

word2vec的两种模型
  • CBOW模型

​ CBOW(Continuous Bag-of-Words Model),即"连续词袋模型",其应用场景是根据上下文预测中间词,输入X是每个词汇的one-hot向量,输出Y为给定词汇表中每个词作为目标词的概率。

Skip-gram模型

也称为"跳字模型",应用场景是根据中间词预测上下文词,所以输入X为任意单词,输出Y为给定词汇表中每个词作为上下文词的概率。

二、全连接神经网络

全连接神经网络

​ 全连接神经网络是一种连接方式较为简单的人工神经网络结构,某一层的任意一个节点,都和上一层所有节点相连接。

神经网络的激活函数

在神经网络中可以引入非线性激活函数,这样就可以使得神经网络可以对数据进行非线性变换,解决线性模型的表达能力不足的问题。

常见的激活函数
  • Sigmoid激活函数

y = 1 1 + e − x \Large y=\frac{1}{1+e^{-x}} y=1+e−x1

  • Relu激活函数

y = m a x ( 0 , x ) \Large y=max(0,x) y=max(0,x)

  • tanh激活函数

y = e x − e − x e x + e − x = 1 − e − 2 x 1 + e − 2 x \Large y=\frac{e^x-e^{-x}}{e^x+e^{-x}}=\frac{1-e^{-2x}}{1+e^{-2x}} y=ex+e−xex−e−x=1+e−2x1−e−2x

  • Softmax激活函数

p l = e z l ∑ j = 1 k e z j \Large p_l=\frac{e^{z_l}}{\sum_{j=1}^ke^{z_j}} pl=∑j=1kezjezl

Softmax激活函数计算的结果是各个分类的预测概率值,常用于多分类问题

神经网络的过拟合问题

​ 神经网络因为隐藏层的存在可以实现复杂的非线性拟合功能。但随着神经网络层数加深,神经网络很容易发生过拟合现象(在训练集上表现很好,在未知的测试集上表现很差,即"泛化能力差")。

解决神经网络过拟合问题的方法
  • 正则化

​ 与很多机器学习算法一样,可以在待优化的目标函数上添加正则化项(例如L1、L2正则),可以在一定程度减少过拟合的程度。

  • Dropout(随机失活)

​ 可以将Dropout理解为对神经网络中的每一个神经元加上一道概率流程,使得在神经网络训练时能够随机使某个神经元失效。

**注意: **

  • 对于不同神经元个数的神经网络层,可以设置不同的失活或保留概率
  • 如果担心某些层所含神经元较多或比其他层更容易发生过拟合,则可以将该层的失活概率设置得更高一些
感知器工作机制

​ 感知器即单层神经网络,也即"人工神经元",是组成神经网络的最小单

前向传播与反向传播

前向传播

​ 计算输出值的过程称为"前向传播":将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。

反向传播(Back Propagation,BP)

​ 反向传播(BP)说白了根据根据J的公式对W和b求偏导,也就是求梯度。因为我们需要用梯度下降法来对参数进行更新,而更新就需要梯度。

总结:

前向传播得到输出,反向传播调整参数,最后以得到损失函数最小时的参数为最优学习参数。

相关推荐
vvoennvv20 分钟前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
自学互联网1 小时前
使用Python构建钢铁行业生产监控系统:从理论到实践
开发语言·python
无心水1 小时前
【Python实战进阶】7、Python条件与循环实战详解:从基础语法到高级技巧
android·java·python·python列表推导式·python条件语句·python循环语句·python实战案例
q***51891 小时前
【语义分割】12个主流算法架构介绍、数据集推荐、总结、挑战和未来发展
算法·架构
xwill*1 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
陈奕昆1 小时前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追1 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
Ghost-Silver1 小时前
《星火》——关于Deepseek的进化速度
笔记·算法
秋邱2 小时前
高等教育 AI 智能体的 “导学诊践” 闭环
开发语言·网络·数据库·人工智能·python·docker
组合缺一2 小时前
Solon AI 开发学习6 - chat - 两种 http 流式输入输出
python·学习·http