Day4——电商日志数据分析

文章目录


前言

今天完成电商数据分析第一问:

统计页面浏览量(每行记录就是一次浏览)


一、 项目要求

  1. 统计页面浏览量(每行记录就是一次浏览)

  2. 统计各个省份的浏览量 (需要解析IP)

  3. 日志的ETL操作(ETL:数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程)

    为什么要ETL:没有必要解析出所有数据,只需要解析出有价值的字段即可。本项目中需要解析出:ip、url、pageId(topicId对应的页面Id)、country、province、city

二、步骤

1.第一问代码结构

2.代码

创建PageViewDriver类

用于统计网页浏览量

c 复制代码
package mr1;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class PageViewDriver {

    public static void main(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: PageViewDriver <input path> <output path>");
            System.exit(-1);
        }

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "Page View Count");

        job.setJarByClass(PageViewDriver.class);
        job.setMapperClass(PageViewMapper.class);
        job.setCombinerClass(PageViewReducer.class);
        job.setReducerClass(PageViewReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

创建PageViewMapper类

用于处理输入数据并生成键值对

c 复制代码
package mr1;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
public class PageViewMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        context.write(new Text("line"), new IntWritable(1));

    }

}

创建PageViewReducer类

对Map阶段的输出进行聚合和处理

c 复制代码
package mr1;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

public class PageViewReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

3.打JAR包

4.在Hadoop虚拟机运行提交HDFS

总结

这个基于Hadoop的MapReduce程序用于统计网页浏览量。它包含以下组件和功能:

PageViewDriver类是程序的入口点,负责设置作业的配置和运行。

PageViewMapper类是Mapper的实现,将输入数据处理为键值对。

PageViewReducer类是Reducer的实现,对Mapper的输出进行聚合和处理。

Mapper和Reducer的输出键值对类型都是Text和IntWritable。

程序使用Hadoop的FileInputFormat和FileOutputFormat来指定输入路径和输出路径。

通过Job对象的setJarByClass方法设置程序的主类。

通过Job对象的waitForCompletion方法提交作业并等待完成。

相关推荐
samLi06206 分钟前
【工具变量】全国省市区县土地出让结果公告数据(2000-2024年)
大数据
chevysky.cn2 小时前
Elasticsearch部署和集成
大数据·elasticsearch·jenkins
青云交4 小时前
Java 大视界 -- Java 大数据在智能医疗远程手术机器人操作数据记录与分析中的应用(342)
java·大数据·数据记录·远程手术机器人·基层医疗·跨院协作·弱网络适配
武子康4 小时前
大数据-38 Redis 分布式缓存 详细介绍 缓存、读写、旁路、穿透模式
大数据·redis·后端
时序数据说4 小时前
时序数据库的存储之道:从数据特性看技术要点
大数据·数据库·物联网·开源·时序数据库·iotdb
bxlj_jcj5 小时前
Flink时间窗口详解
大数据·flink
诗旸的技术记录与分享5 小时前
Flink-1.19.0源码详解-番外补充4-JobGraph图
大数据·flink
落霞的思绪5 小时前
使用云虚拟机搭建hadoop集群环境
大数据·hadoop·分布式