IRIS论文阅读笔记

  • 这是ICLR2023一篇world model的论文,提出了一个称为IRIS的world model方法
  • 模型仍然是分为两部分,一部分是模拟世界的world model,包括预测下一帧的观测,预测当前reward,预测是否terminate的三个输出;第二部分是强化学习的模型,输出policy和value,可以用于AC算法。
  • 模型的训练是重复以下三步:
    • 利用当前的policy模型,去和真实环境交互,获得一组观测序列。
    • 利用上述观测数据,train world model
    • 利用world model,train RL model

world model

  • world model 包含几部分,首先是一个VQ-VAE (下图的E和D)用于从图像观测中提取token,然后是一个GPT (下图的G)用于预测下一帧和当前的reward和termination。
  • 可以看到,每个时刻,G的输入不仅包含当前时刻的tokens和action,还包含之前的tokens和actions。也就是说,假设每个image最终由16个token表征,action由一个token表征,则t=0时transformer的输入是17个token,t=1时transformer的输入就是34个token了。注意,train world model的时候,是在已经采样好的数据上train的,也就是说此时已经有序列了,不需要交互什么的。我已经采样好一个17n的序列了,只需要对这个序列仅需mask prediction即可,即根据17t的输入,预测17*(t+1)的输出即可,并且使用gt而非预测结果作为下一个t的输入。
  • 另一个需要注意的点是,用的是GPT的框架,即transformer decoder结构,所以是token是一个个预测的,也就是说,预测t=1时刻的token并不是一次性全预测出来的,而是先用t=0时刻的17个token作为输入,预测t=1时刻的第一个token,然后把这18个token作为输入,预测第二个token,以此类推。
相关推荐
AustinCyy5 分钟前
【论文笔记】MasRouter: Learning to Route LLMs for Multi-Agent Systems
论文阅读
一个响当当的名号22 分钟前
lectrue1 关系模型和代数
笔记
GLDbalala28 分钟前
GPU PRO 4 - 5.1 An Aspect-Based Engine Architecture 笔记
笔记
小裕哥略帅33 分钟前
PMP学习笔记--过程
笔记·学习
ocean'1 小时前
渗透笔记总结
笔记
ljt27249606611 小时前
Flutter笔记--Isolate
笔记·flutter
weixin_440730501 小时前
02测试基础知识笔记
笔记
就叫飞六吧1 小时前
Jenkins 流水线全流程实战笔记
笔记·servlet·jenkins
别了,李亚普诺夫1 小时前
运算放大器的参数、选型与应用-学习笔记
笔记·学习
中屹指纹浏览器2 小时前
指纹浏览器网络隔离与泄漏防护技术全解析——从架构设计到落地实践摘要
经验分享·笔记