IRIS论文阅读笔记

  • 这是ICLR2023一篇world model的论文,提出了一个称为IRIS的world model方法
  • 模型仍然是分为两部分,一部分是模拟世界的world model,包括预测下一帧的观测,预测当前reward,预测是否terminate的三个输出;第二部分是强化学习的模型,输出policy和value,可以用于AC算法。
  • 模型的训练是重复以下三步:
    • 利用当前的policy模型,去和真实环境交互,获得一组观测序列。
    • 利用上述观测数据,train world model
    • 利用world model,train RL model

world model

  • world model 包含几部分,首先是一个VQ-VAE (下图的E和D)用于从图像观测中提取token,然后是一个GPT (下图的G)用于预测下一帧和当前的reward和termination。
  • 可以看到,每个时刻,G的输入不仅包含当前时刻的tokens和action,还包含之前的tokens和actions。也就是说,假设每个image最终由16个token表征,action由一个token表征,则t=0时transformer的输入是17个token,t=1时transformer的输入就是34个token了。注意,train world model的时候,是在已经采样好的数据上train的,也就是说此时已经有序列了,不需要交互什么的。我已经采样好一个17n的序列了,只需要对这个序列仅需mask prediction即可,即根据17t的输入,预测17*(t+1)的输出即可,并且使用gt而非预测结果作为下一个t的输入。
  • 另一个需要注意的点是,用的是GPT的框架,即transformer decoder结构,所以是token是一个个预测的,也就是说,预测t=1时刻的token并不是一次性全预测出来的,而是先用t=0时刻的17个token作为输入,预测t=1时刻的第一个token,然后把这18个token作为输入,预测第二个token,以此类推。
相关推荐
昊喵喵博士14 分钟前
直接用 JavaScript 给输入框赋值,Vue 页面input只是纯展示 并 没有触发 vue 的v-model 赋值
笔记
卡提西亚2 小时前
C++笔记-26-类模板
c++·笔记
yaocheng的ai分身2 小时前
停止过度思考 Obsidian:一份真正有效的初学者指南
笔记
搞机械的假程序猿3 小时前
普中51单片机学习笔记-矩阵按键
笔记·学习·51单片机
m0_650108244 小时前
MiniGPT-4:解锁 LLM 驱动的高级视觉语言能力
论文阅读·开源·视觉语言大模型·minigpt-4·跨模态对齐·强llm+视觉对齐
WSKH09295 小时前
【论文阅读】(2016)Dual Inequalities for Stabilized Column Generation Revisited
论文阅读·线性规划·运筹学·列生成·对偶不等式·稳定列生成
喂自己代言7 小时前
心理健康与生活质量
笔记
不夜牛仔7 小时前
算法笔记17 - 贪心算法介绍与思路 | 路灯摆放问题 | 活动安排问题 | 最低字典序拼接 | 金条分割问题 | 项目投资问题
笔记·算法·贪心算法
大邳草民7 小时前
深入理解 Python 的属性化方法
开发语言·笔记·python
degen_7 小时前
BDS 执行平台相关动作
c语言·笔记·bios