FastAPI 作为H5中流式输出的后端

FastAPI 作为H5中流式输出的后端

最近大家都在玩LLM,我也凑了热闹,简单实现了一个本地LLM应用,分享给大家,百分百可以用哦~^ - ^

先介绍下我使用的三种工具:

Ollama:一个免费的开源框架,可以让大模型很容易的运行在本地电脑上

FastAPI:是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 并基于标准的 Python 类型提示

React:通过组件来构建用户界面的库

简单来说就类似于LLM(数据库)+FastAPI(服务端)+React(前端)

前端:

html 复制代码
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>SSE Demo with Fetch</title>
    <style>
        #events {
            height: 200px;
            border: 1px solid #ccc;
            padding: 5px;
            overflow-y: scroll;
            white-space: pre-wrap; /* 保留空格和换行 */
        }

    </style>
    <script src="./js/jquery-3.1.1.min.js"></script>
</head>
<body>

<h1>Server-Sent Events Test</h1>
<button id="start">Start Listening</button>
<label for="" >apiUrl</label>
<input type="text" name="" id="url" value="http://127.0.0.1:8563/llm_stream" >
<br>
<label> 返回内容</label>
<br>
<input type="text" name="" id="userText" value="" >
<br>
<input type="textarea" name="" id="outtext_talk" value="" style="width:400px; height: 200px;"></textarea>
<div id="events"></div>

<script>
    $("#start").click(async function() {
        console.log($("#userText").val());
        let text=$("#userText").val().trim();
        if(text==''){
            alert("用户输入不为空");
            return 0;
        }
const data={
    content:text,
    model:"gpt-3.5-turbo",
    stream:true
}

$("#outtext_talk").val('')

    const res= await fetch($('#url').val(),{
            method:"POST",
            body:JSON.stringify(data),
            headers: {
  "Content-Type": "application/json",
  }
});
        const reader=res.body?.pipeThrough(new TextDecoderStream()).getReader();
        let count=0
        const textDecoder = new TextDecoder();

        while (count<10){
            let {done,value} = await reader.read()
            if (done) {
console.log("***********************done");

break;
            }
          
            let parts = value.split('\r\n\r\n'); // 根据 SSE 的数据格式分割
            // 处理所有完整的消息
            console.log(parts);
            try{
                parts.slice(0,-1).forEach(part =>{
                 
                    console.log(part);
                if(part.startsWith('data:')){
                    const data=part.replace('data:','')
                    aiText=JSON.parse(data)
                    $('#outtext_talk').val( $('#outtext_talk').val()+aiText.message)
                }

            })

            }catch(error){
                console.error("JSON解析出错",detext);
        count+=1;
            }
    

                }
               
    });
</script>

</body>
</html>

后端:

python 复制代码
# -*- coding:utf-8 -*-
"""
@Author: 风吹落叶
@Contact: waitKey1@outlook.com
@Version: 1.0
@Date: 2024/6/11 22:51
@Describe: 
"""
import asyncio
import json

from fastapi import FastAPI, Response
from fastapi.responses import StreamingResponse
import time
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel

import openai
import os
import os
from openai import OpenAI


def openai_reply(content,model="gpt-3.5-turbo"):
    client = OpenAI(
        # This is the default and can be omitted
        api_key='sk-S7KwoLDoAzi5kwOs3b3e27A66e72E6',
        base_url='https://kksj.zeabur.app/v1'
    )

    chat_completion = client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": content,
            }
        ],
        model=model,
    )
    # print(chat_completion)
    return chat_completion.choices[0].message.content




app = FastAPI()
# 启用CORS支持
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"], # 或者只列出 ["POST", "GET", "OPTIONS", ...] 等
    allow_headers=["*"],
)

class Req(BaseModel):
    text:str
    stream:bool

def event_stream(reqs):
    for _ in range(10):  # 演示用,发送10次消息后关闭连接
        yield json.dumps({'text':f"data: Server time is {time.ctime()} s {reqs.text[:2]}"})
        time.sleep(1)

@app.post("/events")
async def get_events(reqs:Req):
    return StreamingResponse(event_stream(reqs), media_type="application/json")



class LLMReq(BaseModel):
    content:str
    model:str
    stream:bool

def openai_stream(content,model='gpt-3.5-turbo'):
    client = OpenAI(
        # This is the default and can be omitted
        api_key='sk-S7KwoLDoAzi5kwOs3b3e27A64eD6e72E6',
        base_url='https://kksj.zeabur.app/v1'
    )
    stream = client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": content,
            }
        ],  # 记忆
        model=model,
        stream=True,
    )
    return stream


from starlette.requests import Request
from sse_starlette import EventSourceResponse
@app.post("/llm_stream")
async def flush_stream(req: LLMReq):
    async def event_generator(req: LLMReq):
        stream = openai_stream(req.content, req.model)
        for chunk in stream:
            if chunk.choices[0].delta.content is not None:
                word=chunk.choices[0].delta.content
                yield json.dumps({"message": word}, ensure_ascii=False)
                await asyncio.sleep(0.001)


    return EventSourceResponse(event_generator(req))


if __name__ == '__main__':
    uvicorn.run(app,port=8563)
相关推荐
simon_skywalker7 小时前
FastAPI实战笔记(二) 数据处理
fastapi
哥本哈士奇12 小时前
使用Gradio构建AI前端 - RAG的QA模块
前端·人工智能·状态模式
二狗哈13 小时前
Cesium快速入门33:tile3d设置样式
3d·状态模式·webgl·cesium·地图可视化
创新技术阁15 小时前
CryptoAiAdmin项目数据库表自动创建和初始化
后端·python·fastapi
懒人村杂货铺17 小时前
前端步入全栈第一步
前端·docker·fastapi
阿珊和她的猫18 小时前
实现埋点收集用户页面点击事件技术指南
状态模式
simon_skywalker1 天前
FastAPI实战笔记(一) 基本介绍与简单操作
fastapi
wang6021252181 天前
阿里云存储的一些简要概述
数据库·阿里云·fastapi
山沐与山2 天前
【设计模式】Python工厂模式与依赖注入:FastAPI的Depends到底在干嘛
python·设计模式·fastapi
啊阿狸不会拉杆2 天前
GLM-4.7 与 MiniMax M2.1 模型使用与配置指南
状态模式·api