数学建模整数规划学习笔记

与线性规划的本质区别在于决策变量是否取整。

(1)分支定界法

若不考虑整数限制先求出相应松弛问题的最优解:

若松弛问题(线性规划)无解,则ILP(整数规划)无解。

若求得的松弛问题最优解符合整数要求,则是ILP的最优解;

若不满足整数条件,则任选一个不满足整数条件的变量Xi来构造新的约束添加到松弛问题中形成两个子问题:增加两个约束条件:决策变量 <= 决策变量向下取整,决策变量大于 >= 决策变量向下取整 + 1.

intprog函数:

在linprog函数基础上改造,增加了一个误差e,I为整数约束 :

复制代码
[x,favl,status] = intprog(f,A,b,I,Aeq,beq,lb,ub,e)

status:判断是否有解:

大于0表示有解,小于0表示无解

Display选项的可能值:

  • 'off': 不显示任何输出信息。
  • 'none': 不显示任何输出信息(与'off'相同)。
  • 'final': 仅在求解完成后显示最终结果的信息。
  • 'iter': 在每次迭代时显示详细的输出信息,包括迭代次数、当前解、当前目标函数值等。

linprog函数:

复制代码
[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub, x0, options)

参数解释如下:

  1. f:目标函数的系数向量。
  2. A:不等式约束矩阵(左侧)。
  3. b:不等式约束向量(右侧)。
  4. Aeq:等式约束矩阵(左侧)。
  5. beq:等式约束向量(右侧)。
  6. lb:变量下界。
  7. ub:变量上界。
  8. x0:初始点(起始值)。
  9. options:优化选项结构体,由 optimoptions 函数创建。
相关推荐
Chef_Chen2 分钟前
从0开始学习R语言--Day40--Kruskal-Wallis检验
开发语言·学习·r语言
茫忙然15 分钟前
【WEB】Polar靶场 Day8 详细笔记
笔记
飞升不如收破烂~20 分钟前
英语笔记1.0
笔记
ozawacai25 分钟前
markdown学习笔记(个人向) Part.1
笔记·学习
喝可乐的布偶猫30 分钟前
Java-----韩顺平单例设计模式学习笔记
java·笔记·设计模式
吃货界的硬件攻城狮32 分钟前
【显示模块】嵌入式显示与触摸屏技术理论
stm32·单片机·嵌入式硬件·学习
rui锐rui1 小时前
大数据学习6:Sqoop数据迁移工具
大数据·学习·sqoop
psybrain2 小时前
脑科学圈| 利用眼动追踪评估演讲情境下焦虑障碍儿童的注视行为
学习·心理学·脑科学·课堂·焦虑·儿童青少年·眼动
笑衬人心。2 小时前
Java 17 新特性笔记
java·开发语言·笔记
序属秋秋秋3 小时前
《C++初阶之内存管理》【内存分布 + operator new/delete + 定位new】
开发语言·c++·笔记·学习