PAL: Program-aided Language Models

PAL: Program-aided Language Models

ArXiv:https://arxiv.org/pdf/2211.10435

GitHub:https://reasonwithpal.com/

一、动机

  • 大模型与Chain-of-Thought可以很好地将一些复杂的问题分解为若干个子问题并进行逐步推理;
  • 但是对于一些较为复杂的数学运算,活着涉及到交大的数字符号运算时,即便大模型对任务的规划和分解思考是正确的,但是依然会存在计算错误,这些错误通常大模型很难很好地解决;
  • 因此,本文思考将一些复杂的推理任务先用大模型进行分解,其次让大模型生成python代码并基于解释器来实现计算。通过引入代码,可以弥补由于计算错误所带来的问题。

This bridges an important gap in chain-of- thought-like methods, where reasoning chains can be correct but produce an incorrect answer.

二、方法

本文提出Program-Aided Language Model(PAL)。

相比于Chain-of-thought,每一个exemplar中包含一个推理路径,这个推理路径时融合了自然语言和python代码。且最终只提供完整的变成代码,不提供最终答案。大模型在该prompt的引导下对目标测试样本进行推理和代码生成,最终借助python解释器获得最终答案。

下图展示了一个同时含有自然语言和python代码的推理路径:

PAL方法与CoT的对比图如下所示:

Exemplar的构建

对于评测数据集中,如果现有的工作如果已经提供了exemplar,则直接使用,否则则随机采样3~6个标注样本作为exemplar。

推理路径中的代码函数名称也要与原始变量名保持一致,采用下划线分割的形式定义。

For example, a variable that describes the number of apples in the basket should have a name such as num apples in basket. This keeps the generated code linked to the entities in the question.

三、实验

数据集:

  • 数学运算:GSM8K、SVAMP、ASDIV、MAWPS;
  • 符号推理:BBH-Hard
  • 算法推理:BBH-Hard

GSM8K-Hard:

作者通过启发式更改数字的方式构建了一个新的数据集,并基于这个数据发现50%的情况下大模型虽然给出正确的推理思路但是由于交大的数字计算存在错误导致最终预测错误。

符号推理的prompt样例:

数学运算实验结果:

四、实现

Prompt

针对数学运算、符号推理、算法运算三种类型的任务分别设计了带有编程语言和自然语言的prompt。

python 复制代码
MATH_CHAT_BETA_PROMPT = '''
Let's use python to solve math problems. Here are three examples how to do it,
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

def solution():

"""Olivia has 23. She bought five bagels for 3 each. How much money does she have left?"""

money_initial = 23

bagels = 5

bagel_cost = 3

money_spent = bagels * bagel_cost

money_left = money_initial - money_spent

result = money_left

return result

复制代码
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?

def solution():

"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?"""

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday

result = golf_balls_left

return result

复制代码
Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?

def solution():

"""There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?"""

computers_initial = 9

computers_per_day = 5

num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days

computers_total = computers_initial + computers_added

result = computers_total

return result

复制代码
How about this question?
Q: {question}
'''.strip()
相关推荐
言之。5 分钟前
Claude Code IDE 集成工作原理详解
ide·人工智能
肥猪猪爸9 分钟前
计算机视觉中的Mask是干啥的
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·视觉检测
yiersansiwu123d18 分钟前
工程化破局,2025年AI大模型的价值兑现之路
人工智能
_codemonster20 分钟前
自然语言处理容易混淆知识点(六)SentenceTransformer的训练参数
人工智能·自然语言处理
2501_9413297222 分钟前
基于DETR的血细胞显微图像检测与分类方法研究【原创】_1
人工智能·数据挖掘
人工智能训练26 分钟前
Docker Desktop WSL 集成配置宝典:选项拆解 + 精准设置指南
linux·运维·服务器·人工智能·docker·容器·ai编程
golang学习记35 分钟前
VS Code使用 GitHub Copilot 高效重构代码:10 大实战技巧 + 自定义指令封装指南
人工智能
阿杰学AI38 分钟前
AI核心知识62——大语言模型之PRM (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·prm·过程奖励模型
TG:@yunlaoda360 云老大38 分钟前
华为云国际站代理商的CBR支持哪些云服务备份?
网络·人工智能·华为云
用户51914958484541 分钟前
基础设施模板CLI工具:Boilerplates
人工智能·aigc