【剖析】为什么说RBF神经网络的误差为0

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

机器学习中的模型非常的多,但如果要问有没有这样的一个模型,它的训练误差为0,那么就非RBF神经网络莫属了!下面我们来聊聊,为什么RBF神经网络的训练误差为0。

一、RBF神经网络是什么

知道RBF神经网络的人都知道,但不知道RBF神经网络的人还是不知道。所以简单提一下,RBF神经网络是一个什么东西。

1.1.RBF神经网络的原理

如下所示,就是一个RBF函数(钟型函数),RBF函数很多,最常用的就是高斯函数

RBF神经网络就是通过RBF径向基函数来"凑"出可以拟合所有训练样本点的目标曲线。

从图中可以看到,RBF神经网络就是利用RBF函数的局部非0性,只要每个样本点都拱一个RBF,最后就能轻轻松松拼出目标曲线了。

1.2.RBF神经网络的数学表达式

从RBF的原理,可以轻易得到RBF神经网络的数学表达式。 以2输入3个隐节点为例,RBF 神经网络模型的数学表达式形式如下

从表达式可以看到,模型的输出y就是多个RBF函数之和。

二、RBF神经网络为什么误差为0

2.1.RBF神经网络是如何求得0误差参数的

在RBF神经网络中,有多少个样本点,就有多少个隐节点(即RBF函数)。而隐层的权重就是输入样本(即隐层参数是不需要求解的),最终只需求解输出层的权重与阈值。由于每个RBF的值都可以直接计算得到(因为隐层参数已知),因此RBF输出层的参数只需要求解以下的线性方程组就可以得到:

当样本有n个时,就有n个RBF,因此上述线性方程组的列大于行,所以必然有非0解使得上述方程组成立。因此,RBF神经网络的训练误差也就必然为0

2.2.为什么有的RBF神经网络误差不为0

当我们在matlab中用newrb构建一个RBF神经网络时,会发现误差并不为0。这是因为newrb使用了正交最小二乘法来求解RBF,它的目的是尽量地减少一些隐节点。

因为RBF神经网络的隐节点个数与样本个数一致,因此在样本较多时,网络也比较复杂,因此newrb会在保持误差不太大的前提下,尽量减少一些隐节点。虽然牺牲了一部分训练精度,但加强了网络的泛化能力,所以也不偿是件好事。


RBF神经网络真是一个有趣又有效的模型!

相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂

《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂

《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

相关推荐
古希腊掌管学习的神6 分钟前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI34 分钟前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长1 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME2 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee3 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa3 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类