day50 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 392.判断子序列

1143. 最长公共子序列

提示

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

复制代码
输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

复制代码
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

复制代码
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        maxlen=max(len(text1),len(text2))
        dp=[[0 for i in range(len(text2))] for j in range(len(text1))]
        if text1[0]==text2[0]:
                dp[0][0]=1
        for j in range(1,len(text2)):
            if text1[0]==text2[j]:
                dp[0][j]=1
            else:
                dp[0][j]=dp[0][j-1]
        for i in range(1,len(text1)):
            if text1[i]==text2[0]:
                dp[i][0]=1
            else:
                dp[i][0]=dp[i-1][0]
        for i in range(1,len(text1)):
            for j in range(1,len(text2)):
                if text1[i]==text2[j]:
                    dp[i][j]=dp[i-1][j-1]+1
                else:
                    dp[i][j]=max(dp[i][j-1],dp[i-1][j])
        return dp[-1][-1]
#简化版本
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]
相关推荐
Miraitowa_cheems7 小时前
LeetCode算法日记 - Day 104: 通配符匹配
linux·数据结构·算法·leetcode·深度优先·动态规划
程序员东岸7 小时前
从零开始学二叉树(上):树的初识 —— 从文件系统到树的基本概念
数据结构·经验分享·笔记·学习·算法
蕓晨7 小时前
数据结构 图 的邻接表建立
数据结构·c++
甄心爱学习8 小时前
数据挖掘11-分类的高级方法
人工智能·算法·分类·数据挖掘
爪哇部落算法小助手9 小时前
每日两题day44
算法
qq_401700419 小时前
嵌入式常用宏定义
数据结构
不穿格子的程序员9 小时前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找
Kuo-Teng10 小时前
LeetCode 19: Remove Nth Node From End of List
java·数据结构·算法·leetcode·链表·职场和发展·list
Kuo-Teng10 小时前
LeetCode 21: Merge Two Sorted Lists
java·算法·leetcode·链表·职场和发展
2301_8003997210 小时前
stm32 printf重定向到USART
java·stm32·算法