【从零开始认识AI】梯度下降法

目录

[1. 原理介绍](#1. 原理介绍)

[2. 代码实现](#2. 代码实现)


1. 原理介绍

梯度下降法(Gradient Descent)是一种用于优化函数的迭代算法,广泛应用于机器学习和深度学习中,用来最小化一个目标函数。该目标函数通常代表模型误差或损失。

基本思想是从一个初始点出发,通过不断沿着目标函数的负梯度方向更新参数,逐步逼近函数的局部最小值(或者全局最小值)。梯度是目标函数相对于参数的导数,因此,负梯度方向是函数值下降最快的方向。

具体步骤如下:

  1. **初始化参数**:随机选择模型初始参数 \( \theta_0 \)。

  2. **计算梯度**:计算目标函数关于当前参数的梯度 \( \nabla J(\theta) \),这里 \( J(\theta) \) 是目标函数。

  3. **更新参数**:根据梯度和学习率 \( \alpha \) 更新参数:

\[

\theta := \theta - \alpha \nabla J(\theta)

\]

其中,学习率 \( \alpha \) 是一个预先设置的超参数,决定了每一步更新的大小。

  1. **重复**:重复步骤 2 和 3 直到收敛,即参数不再发生显著变化或者达到预设的迭代次数。
  • 变种

梯度下降法有几种常见变种:

  1. **批量梯度下降(Batch Gradient Descent)**:每一步更新使用整个训练数据集计算梯度。这对于大规模数据集可能会非常耗时。

  2. **随机梯度下降(Stochastic Gradient Descent, SGD)**:每一步更新使用单个样本计算梯度,通过不断地用单个样本更新,效率较高但引入了较大的波动。

  3. **小批量梯度下降(Mini-batch Gradient Descent)**:每一步更新使用一个小批量的样本来计算梯度,结合了批量梯度下降和随机梯度下降的优点。

  • 优化

为了提高梯度下降的效率和效果,可以结合一些优化方法,如:

  • **动量法**:在每一步更新中添加动量,帮助跳出局部最小值。

  • **AdaGrad**、**RMSprop**、**Adam**:这些算法通过自适应调整学习率,以适应不同参数和不同迭代阶段。

梯度下降法是机器学习和深度学习中的关键技术之一,通过梯度下降可以有效地训练模型并优化目标函数。

2. 代码实现

以下用梯度下降法求解函数的最小值:

复制代码
import numpy as np
import matplotlib.pyplot as plt


def f(x):
    return x ** 2 + 5 * np.sin(x)


def df(x):
    return 2 * x + 5 * np.cos(x)


# initialize parameter and learning rate
x = 4
lr = 0.1

epochs = 1000
history = [x]
for _ in range(epochs):
    x = x - lr * df(x)
    history.append(x)
    

xs = np.linspace(-5, 5, 200)
ys = f(xs)

plt.plot(xs, ys, label="f(x)")
plt.xlabel("x")
plt.ylabel("f(x)")

plt.scatter(history, f(np.array(history)), c="g", alpha=0.5, label="Gradient Descent Point")
plt.scatter(history[-1], f(history[-1]), c="r", label="Minimal Point")
plt.legend()

plt.show()
相关推荐
春日见20 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
陈文锦丫21 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
小毅&Nora1 天前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
jianqiang.xue1 天前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
Coding茶水间1 天前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
weixin79893765432...1 天前
Vue + Express + DeepSeek 实现一个简单的对话式 AI 应用
vue.js·人工智能·express
nju_spy1 天前
ToT与ReAct:突破大模型推理能力瓶颈
人工智能·大模型·大模型推理·tot思维树·react推理行动·人工智能决策·ai推理引擎
AI-智能1 天前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
y***86691 天前
C机器学习.NET生态库应用
人工智能·机器学习
deng12041 天前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘