第九届信也科技杯全球AI算法大赛——语音深度鉴伪识别参赛A榜 0.968961分

遗憾没有进复赛,只是第41名。先贴个A榜的成绩。A榜的前三十名晋级,个个都是99分的大佬,但是B榜的成绩就有点低了,应该是数据不同源的问题,第一名0.78分。官网链接:语音深度鉴伪识别

官方baselin:https://github.com/xinyebei/2024_finvcup_baseline
baseline源码:https://github.com/xieyuankun/Codecfake
实验的 源码:https://github.com/Shybert-AI/Codecfake_ResNet
任务描述:

简单的说一下本次比赛方案的想法,首先明确是语音深度鉴伪识别任务,于是发动互联网的强大的搜索功能,尽可能多的搜索到更多的语音深度鉴伪识别算法。也相应的搜索对应的数据集,在看到此帖子[深度伪造音频普遍检测的Codecfake数据集和对策],同时在github上找到相应的源码,因此方案基于Codecfake进行。通过将网络结构修改成ResNet等实验,提出Codecfake_ResNet模型,让语音鉴别模型的分类指标达到0.968961。(https://blog.csdn.net/robinfang2019/article/details/138673202)

模型架构:
训练步骤:

python 复制代码
1.下载finvcup9th_1st_ds5数据集,解压到data目录下
2.执行data_prepare.py 脚本生成训练的csv文件,修改finvcup9th_1st_ds5_valid_data.csv为finvcup9th_1st_ds5_dev_data.csv
python data_prepare.py
3.执行提取特征文件
python preprocess.py 
4.训练
python main_train.py  --path_to_features preprocess_xls-r-5  -f1 preprocess_xls-r-5 --out_fold ./pretrained_model/codec_w2v2aasist_ResNet50_CSAM_xls-r-5_300m/ --CSAM True --train_task codecfake  --num_epochs 50  --batch_size 16 --lr 0.001  --gpu 0   --seed  2024   --num_workers 1
5.预测
python predict.py

实验结果:

通过实验分析提升网络的层数和多模型融合可以提升。

相关推荐
晚霞的不甘5 分钟前
CANN × ROS 2:为智能机器人打造实时 AI 推理底座
人工智能·神经网络·架构·机器人·开源
互联网Ai好者8 分钟前
MiyoAI数参首发体验——不止于监控,更是你的智能决策参谋
人工智能
island13148 分钟前
CANN HIXL 通信库深度解析:单边点对点数据传输、异步模型与异构设备间显存直接访问
人工智能·深度学习·神经网络
初恋叫萱萱14 分钟前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器15 分钟前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann
Kiyra16 分钟前
作为后端开发你不得不知的 AI 知识——RAG
人工智能·语言模型
共享家952719 分钟前
Vibe Coding 与 LangChain、LangGraph 的协同进化
人工智能
dvlinker21 分钟前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_22 分钟前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆23 分钟前
YOLOP车道检测
人工智能·python·算法