第九届信也科技杯全球AI算法大赛——语音深度鉴伪识别参赛A榜 0.968961分

遗憾没有进复赛,只是第41名。先贴个A榜的成绩。A榜的前三十名晋级,个个都是99分的大佬,但是B榜的成绩就有点低了,应该是数据不同源的问题,第一名0.78分。官网链接:语音深度鉴伪识别

官方baselin:https://github.com/xinyebei/2024_finvcup_baseline
baseline源码:https://github.com/xieyuankun/Codecfake
实验的 源码:https://github.com/Shybert-AI/Codecfake_ResNet
任务描述:

简单的说一下本次比赛方案的想法,首先明确是语音深度鉴伪识别任务,于是发动互联网的强大的搜索功能,尽可能多的搜索到更多的语音深度鉴伪识别算法。也相应的搜索对应的数据集,在看到此帖子[深度伪造音频普遍检测的Codecfake数据集和对策],同时在github上找到相应的源码,因此方案基于Codecfake进行。通过将网络结构修改成ResNet等实验,提出Codecfake_ResNet模型,让语音鉴别模型的分类指标达到0.968961。(https://blog.csdn.net/robinfang2019/article/details/138673202)

模型架构:
训练步骤:

python 复制代码
1.下载finvcup9th_1st_ds5数据集,解压到data目录下
2.执行data_prepare.py 脚本生成训练的csv文件,修改finvcup9th_1st_ds5_valid_data.csv为finvcup9th_1st_ds5_dev_data.csv
python data_prepare.py
3.执行提取特征文件
python preprocess.py 
4.训练
python main_train.py  --path_to_features preprocess_xls-r-5  -f1 preprocess_xls-r-5 --out_fold ./pretrained_model/codec_w2v2aasist_ResNet50_CSAM_xls-r-5_300m/ --CSAM True --train_task codecfake  --num_epochs 50  --batch_size 16 --lr 0.001  --gpu 0   --seed  2024   --num_workers 1
5.预测
python predict.py

实验结果:

通过实验分析提升网络的层数和多模型融合可以提升。

相关推荐
kisshuan123961 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits1 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅1 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448372 小时前
机器学习基本概念与梯度下降
人工智能
水如烟2 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿2 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——3 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程4 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator4 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能