YOLOv10使用教程及导读


首先推荐一下我的YOLOv8/v10项目,仅需一个v8的钱(69.9),付费进群,即可获取v8/v10的全部改进,欢迎进群。


1 YOLOv10简介

论文链接:https://arxiv.org/pdf/2405.14458

官方代码链接:https://github.com/THU-MIG/yolov10

本文代码链接:https://github.com/ultralytics/ultralytics

论文摘要:

在过去的几年里,由于有效的平衡了计算成本和检测性能,YOLO已经成为实时目标检测领域的主导范式。研究人员对yolo的架构设计、优化目标、数据增强策略等进行了探索,并取得了显著进展。然而,后处理中依赖的非最大抑制(NMS)阻碍了yolo的端到端部署,并对产生推理延迟。此外,YOLO中各部件的设计缺乏全面的检查,导致计算冗余明显,限制了模型的能力。它提供了次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLO模型的性能效率边界。为此,我们首先提出了一种一致的双任务方法,用于无nms训练的YOLOs,它具有优良的性能和较低的推理延迟。此外,我们还提出了整体效率-精度驱动的模型设计策略。我们从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。我们的努力成果是用于实时端到端目标检测的新一代YOLO系列,称为YOLOv10。大量的实验表明,YOLOv10在各种模型尺度上都达到了最先进的性能和效率。例如,YOLOv10-S在COCO上类似的AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOPs减少2.8倍。与YOLOv9-C相比,在相同性能下,YOLOv10-B的延迟减少了46%,参数减少了25%。

YOLOv10创新点简述:

在YOLOv8的基础上取消了NMS,提出了新模块CfCIB, 基础框架仍为YOLOv8。


2 作者所用方法

作者提出了一种无NMS训练策略,通过双重标签分配和一致的匹配度量,实现了高效率和准确率。

双重标签分配策略:简单点说就是为yolo加入了另一个一对一的检测头。它保留了与原始一对多分支相同的结构和优化目标,但利用一对一匹配来获得标签分配。在训练过程中,两个头部与模型共同优化,使主干和颈部网络享受到一对多分配所提供的丰富监督。在推理过程中,抛弃了一对多的检测头,利用一对一检测头进行预测。

一致的匹配度量:为了使两个分支在训练过程中保持一致,作者采用了一致的匹配度量。匹配度量用于评估预测边界框与真实边界框之间的一致性。

The compact inverted block (CIB)和The partial self-attention module (PSA).


3 YOLOv10使用教程

3.1 模型训练

前往上方提供的链接下载代码,本文教程演示代码链接:ultralytics

解压并使用Pycharm(或者VsCode等软件)打开。准备一个数据集或点击此链接下载:https://pan.baidu.com/s/ ,新建一个train.py脚本,并选择配置好的torch环境,并修改相关信息。此处我使用的epochs值为10,读者可自行调大epochs(训练次数)的值,使得模型达到更好的效果。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/v10/yolov10n.yaml')
    # model.load('yolov10n.pt')
    model.train(pretrained=True, data='./data.yaml', epochs=10, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

运行脚本,显示模型信息。

训练完成。

3.2 模型验证

创建val脚本,并填入图中代码,运行脚本即可获得相关性能指标。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


if __name__ == '__main__':
    model = YOLO(model='./runs/train/exp/weights/best.pt')
    model.val(data='./data.yaml', batch=5, device='0', imgsz=640, workers=2, project='runs/val/', name='exp')

3.3 模型推理

创建检测脚本,并填入相关信息,运行即可进行检测。

from ultralytics.models import YOLO


if __name__ == '__main__':
    model = YOLO(model='./yolov8n.pt')
    results = model('ultralytics/assets/bus.jpg')

    # Process results list
    for result in results:
        boxes = result.boxes
        result.show()
        result.save(filename="./runs/detect/result.jpg")  # save to disk

检测效果演示,以下为使用yolov8n.pt检测的结果,读者可使用相关训练好的权重检测相应图片。


欢迎关注

相关推荐
AI街潜水的八角16 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光21 小时前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角1 天前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&2 天前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天2 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机2 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集
abments3 天前
C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测
开发语言·yolo·c#
Coovally AI模型快速验证3 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn
那年一路北3 天前
深入探究 YOLOv5:从优势到模型导出全方位解析
人工智能·yolo·目标跟踪
明月下4 天前
【数据分析】coco格式数据生成yolo数据可视化
yolo·信息可视化·数据分析