YOLOv8 训练报错:PyTorch 2.6+ 模型加载兼容性问题解决

问题

训练时报错,核心错误信息为_pickle.UnpicklingError: Weights only load failed,涉及torch.load函数的weights_only参数及DetectionModel类的加载限制

bash 复制代码
yolo8) yfzx@yfzx-4090:~/project/go2/yolov8_train$ python main.py
Ultralytics YOLOv8.3.176 🚀 Python-3.10.18 torch-2.8.0+cu128 CUDA:0 (NVIDIA GeForce RTX 4090, 24092MiB)
trainer: task=detect, mode=train, model=yolov8s.pt, data=coco128.yaml, epochs=300, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train8, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, save_dir=runs/detect/train8, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml
Traceback (most recent call last):
  File "/home/yfzx/project/go2/yolov8_train/main.py", line 7, in <module>
    trainer.train()
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 198, in train
    self._do_train(world_size)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 312, in _do_train
    self._setup_train(world_size)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 226, in _setup_train
    ckpt = self.setup_model()
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 530, in setup_model
    weights, ckpt = attempt_load_one_weight(model)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/nn/tasks.py", line 806, in attempt_load_one_weight
    ckpt, weight = torch_safe_load(weight)  # load ckpt
  File "/home/yfzx/project/go2/yolov8_train/yolov8/nn/tasks.py", line 732, in torch_safe_load
    ckpt = torch.load(file, map_location="cpu")
  File "/home/yfzx/conda/anaconda/envs/yolo8/lib/python3.10/site-packages/torch/serialization.py", line 1529, in load
    raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
        (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
        (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
        WeightsUnpickler error: Unsupported global: GLOBAL ultralytics.nn.tasks.DetectionModel was not an allowed global by default. Please use `torch.serialization.add_safe_globals([ultralytics.nn.tasks.DetectionModel])` or the `torch.serialization.safe_globals([ultralytics.nn.tasks.DetectionModel])` context manager to allowlist this global if you trust this class/function.

Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.

报错原因

PyTorch 2.6 及以上版本中,torch.load函数的weights_only参数默认值从False改为True。

参数设为True时,为安全起见仅允许加载权重数据,禁止执行模型文件中可能包含的自定义类代码。

YOLOv8 的模型文件(如yolov8s.pt)包含自定义的DetectionModel类序列化信息,因此被拦截。

解决方法

临时允许加载完整模型

修改 YOLOv8 代码中加载模型的部分,显式设置weights_only=False。

找到报错中提到的torch_safe_load函数(路径:yolov8/nn/tasks.py第 732 行),将:

python 复制代码
ckpt = torch.load(file, map_location="cpu")

修改为

python 复制代码
ckpt = torch.load(file, map_location="cpu", weights_only=False)  # 关闭安全检查

再次运行即可

相关推荐
大刘讲IT21 小时前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380221 小时前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹21 小时前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬21 小时前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
Dev7z1 天前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路1 天前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai
企业智能研究1 天前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析
jqrbcts1 天前
关于发那科机器人视觉补偿报警设置
人工智能·算法
_Li.1 天前
机器学习-线性判别函数
人工智能·算法·机器学习
AI营销干货站1 天前
原圈科技推动AI营销内容生产革新:高质量素材每日自动生成
人工智能·科技