YOLOv8 训练报错:PyTorch 2.6+ 模型加载兼容性问题解决

问题

训练时报错,核心错误信息为_pickle.UnpicklingError: Weights only load failed,涉及torch.load函数的weights_only参数及DetectionModel类的加载限制

bash 复制代码
yolo8) yfzx@yfzx-4090:~/project/go2/yolov8_train$ python main.py
Ultralytics YOLOv8.3.176 🚀 Python-3.10.18 torch-2.8.0+cu128 CUDA:0 (NVIDIA GeForce RTX 4090, 24092MiB)
trainer: task=detect, mode=train, model=yolov8s.pt, data=coco128.yaml, epochs=300, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train8, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, save_dir=runs/detect/train8, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml
Traceback (most recent call last):
  File "/home/yfzx/project/go2/yolov8_train/main.py", line 7, in <module>
    trainer.train()
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 198, in train
    self._do_train(world_size)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 312, in _do_train
    self._setup_train(world_size)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 226, in _setup_train
    ckpt = self.setup_model()
  File "/home/yfzx/project/go2/yolov8_train/yolov8/engine/trainer.py", line 530, in setup_model
    weights, ckpt = attempt_load_one_weight(model)
  File "/home/yfzx/project/go2/yolov8_train/yolov8/nn/tasks.py", line 806, in attempt_load_one_weight
    ckpt, weight = torch_safe_load(weight)  # load ckpt
  File "/home/yfzx/project/go2/yolov8_train/yolov8/nn/tasks.py", line 732, in torch_safe_load
    ckpt = torch.load(file, map_location="cpu")
  File "/home/yfzx/conda/anaconda/envs/yolo8/lib/python3.10/site-packages/torch/serialization.py", line 1529, in load
    raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
        (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
        (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
        WeightsUnpickler error: Unsupported global: GLOBAL ultralytics.nn.tasks.DetectionModel was not an allowed global by default. Please use `torch.serialization.add_safe_globals([ultralytics.nn.tasks.DetectionModel])` or the `torch.serialization.safe_globals([ultralytics.nn.tasks.DetectionModel])` context manager to allowlist this global if you trust this class/function.

Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.

报错原因

PyTorch 2.6 及以上版本中,torch.load函数的weights_only参数默认值从False改为True。

参数设为True时,为安全起见仅允许加载权重数据,禁止执行模型文件中可能包含的自定义类代码。

YOLOv8 的模型文件(如yolov8s.pt)包含自定义的DetectionModel类序列化信息,因此被拦截。

解决方法

临时允许加载完整模型

修改 YOLOv8 代码中加载模型的部分,显式设置weights_only=False。

找到报错中提到的torch_safe_load函数(路径:yolov8/nn/tasks.py第 732 行),将:

python 复制代码
ckpt = torch.load(file, map_location="cpu")

修改为

python 复制代码
ckpt = torch.load(file, map_location="cpu", weights_only=False)  # 关闭安全检查

再次运行即可

相关推荐
恒点虚拟仿真1 小时前
人工智能+虚拟仿真,助推医学检查技术理论与实践结合
人工智能·ai·虚拟仿真·虚拟仿真实验·人工智能+虚拟仿真·医学检查虚拟仿真
cver1231 小时前
垃圾分类检测数据集-15,000 张图片 智能垃圾分类 回收站与环保设施自动化 公共区域清洁监测 环保机器人 水域与自然环境垃圾监测
人工智能·计算机视觉·分类·数据挖掘·机器人·自动化·智慧城市
paid槮1 小时前
机器学习处理文本数据
人工智能·机器学习·easyui
陈敬雷-充电了么-CEO兼CTO1 小时前
OpenAI开源大模型 GPT-OSS 开放权重语言模型解析:技术特性、部署应用及产业影响
人工智能·gpt·ai·语言模型·自然语言处理·chatgpt·大模型
桃源学社(接毕设)1 小时前
基于Django珠宝购物系统设计与实现(LW+源码+讲解+部署)
人工智能·后端·python·django·毕业设计
鹿导的通天塔1 小时前
高级RAG 00:检索增强生成(RAG)简介
人工智能·后端
计算机sci论文精选1 小时前
CVPR 2025丨机器人如何做看懂世界
人工智能·深度学习·机器学习·机器人·github·人机交互·cvpr
Swaggy T2 小时前
自动驾驶决策算法 —— 有限状态机 FSM
linux·人工智能·算法·机器学习·自动驾驶
神齐的小马2 小时前
机器学习 [白板推导](九)[变分推断]
人工智能·机器学习