Sum of Single Effects Linear Regression (susieR):多个因果变异位点的鉴定

使用susieR鉴定多个因果变异位点只需要两个输入文件,一个输入文件是包含Zscore值的SNP位点(zscore.txt),另一个文件是LD matrix(LD.matrix.ld)。

zscore.txt 文件如下所示:

LD.matrix.ld 文件如下所示:

LD.matrix.ld 文件是通过plink生成的,使用到的命令如下:

bash 复制代码
plink --bfile file --r2 --matrix --out LD.matrix

其中,file是指包含zscore.txt文件中所有SNP的plink格式文件。注意,file.bim的SNP顺序要跟zscore.txt的SNP一列的顺序完全一致,不然后面运行susieR的时候会报错。

通过以上命令得到LD.matrix.ld 文件后,即可通过susieR包鉴定多个因果变异位点,如下所示:

r 复制代码
install.packages("susieR")
rm(list=ls())
library(susieR)
library(data.table)
eq=read.table("zscore.txt", sep="\t", stringsAsFactors=FALSE,header=F)
dat <- fread("LD.matrix.ld")
dat1=as.matrix(dat)
fitted_rss3 <- susie_rss(c(eq$zscore), dat1, n=eq$N, L = 10)
susie_plot(fitted_rss3, y="PIP")
summary(fitted_rss3)$cs

运行susie_plot(fitted_rss3, y="PIP")命令后得到如下图像:

其中,真正的因果变量以红色显示。95%的因果集通过三种不同的颜色(绿色、紫色、蓝色)来表示。

运行summary(fitted_rss3)$cs命令后得到如下结果:

复制代码
#   cs cs_log10bf cs_avg_r2 cs_min_r2
# 1  2   4.033879 1.0000000 1.0000000
# 2  1   6.744086 0.9634847 0.9634847
# 3  3   3.461470 0.9293299 0.7545197
#                                                                                                      variable
# 1                                                                                                         653
# 2                                                                                                     773,777
# 3 362,365,372,373,374,379,381,383,384,386,387,388,389,391,392,396,397,398,399,400,401,403,404,405,407,408,415

结果表示这三个因果信号已被三个因果集(CSs)捕获。注意的是,第三个因果集中包含许多变量,包括真正的因果变量403。

相关推荐
超的小宝贝16 分钟前
数据结构算法(C语言)
c语言·数据结构·算法
木子.李3476 小时前
排序算法总结(C++)
c++·算法·排序算法
闪电麦坤957 小时前
数据结构:递归的种类(Types of Recursion)
数据结构·算法
Gyoku Mint8 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦8 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp8 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
枫景Maple9 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄9 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄9 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯