Sum of Single Effects Linear Regression (susieR):多个因果变异位点的鉴定

使用susieR鉴定多个因果变异位点只需要两个输入文件,一个输入文件是包含Zscore值的SNP位点(zscore.txt),另一个文件是LD matrix(LD.matrix.ld)。

zscore.txt 文件如下所示:

LD.matrix.ld 文件如下所示:

LD.matrix.ld 文件是通过plink生成的,使用到的命令如下:

bash 复制代码
plink --bfile file --r2 --matrix --out LD.matrix

其中,file是指包含zscore.txt文件中所有SNP的plink格式文件。注意,file.bim的SNP顺序要跟zscore.txt的SNP一列的顺序完全一致,不然后面运行susieR的时候会报错。

通过以上命令得到LD.matrix.ld 文件后,即可通过susieR包鉴定多个因果变异位点,如下所示:

r 复制代码
install.packages("susieR")
rm(list=ls())
library(susieR)
library(data.table)
eq=read.table("zscore.txt", sep="\t", stringsAsFactors=FALSE,header=F)
dat <- fread("LD.matrix.ld")
dat1=as.matrix(dat)
fitted_rss3 <- susie_rss(c(eq$zscore), dat1, n=eq$N, L = 10)
susie_plot(fitted_rss3, y="PIP")
summary(fitted_rss3)$cs

运行susie_plot(fitted_rss3, y="PIP")命令后得到如下图像:

其中,真正的因果变量以红色显示。95%的因果集通过三种不同的颜色(绿色、紫色、蓝色)来表示。

运行summary(fitted_rss3)$cs命令后得到如下结果:

复制代码
#   cs cs_log10bf cs_avg_r2 cs_min_r2
# 1  2   4.033879 1.0000000 1.0000000
# 2  1   6.744086 0.9634847 0.9634847
# 3  3   3.461470 0.9293299 0.7545197
#                                                                                                      variable
# 1                                                                                                         653
# 2                                                                                                     773,777
# 3 362,365,372,373,374,379,381,383,384,386,387,388,389,391,392,396,397,398,399,400,401,403,404,405,407,408,415

结果表示这三个因果信号已被三个因果集(CSs)捕获。注意的是,第三个因果集中包含许多变量,包括真正的因果变量403。

相关推荐
随缘而动,随遇而安40 分钟前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董1 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭4 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess075 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁5 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu5 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu5 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
ysa0510306 小时前
Dijkstra 算法#图论
数据结构·算法·图论
一定要AK6 小时前
2025—暑期训练一
算法
一定要AK7 小时前
贪心专题练习
算法