第 8 课:密态引擎SPU框架介绍

本讲主要内容是SPU框架整体结构的介绍。

一、为何做SPU

以大模型预测场景为例,模型是公司的资产,提示词包含用户隐私,如何同时保护模型和提示词。利用隐私计算技术,用户将提示词加密,同时模型在加密环境里进行推理,可以同时保护模型和提示词。

由于数据是敏感且重要的,所以需要隐私计算。

隐私计算是一种高速发展中的技术,包括多方安全计算、同态加密、差分隐私、可信硬件等。基于密码学的隐私计算,提供了非常有限的计算能力,加密计算有易用性差(类型简单,加/乘/与/或等,算子比较底层),性能较差等挑战。SPU就是为了填补加密计算和高级编程语言之间的空白,可以提供较好的易用性(原生AI框架支持),以及较好的性能(编译器运行时协同优化)。

二、SPU简介

SPU是一个虚拟加密处理设备,类比CPU和GPU,从而支持上层的各种应用。SPU是一个虚拟的、安全的、多个参与方的、运算相对较慢的设备。

SPU架构从上至下,分为前端(复用AI前端、TF/JAX/PyTorch)、编译器(将前端产生的机器学习表达加入自定义的隐私保护语义,翻译到运行时。任何数据和密态变量进行计算,结果仍为密态变量。)、运行时(多种并发模型支持,多种协议支持,多部署模式支持)三部分。

SPU的编程界面,使用原生AI框架,使用JIT编译执行,生态无缝衔接,通过修改配置文件即可更改安全协议,无需代码修改。SPU作为一个虚拟设备,也提供了配套的工具链的支持(Profiling、Tracing,Debugging),从而对上层应用和下层协议进行针对性优化以及错误排查。

三、现状和展望

隐语开源生态,SPU支持PPML,支持联邦学习,支持SCQL。

SPU也可以用于前沿学术研究。

SPU作为AI和密码学之间的桥梁,希望可以进一步加速构建隐私计算的生态,例如通过SPU提供的原生Numpy API,构建安全sklearn-like机器学习库,构建安全pandas-like数据分析库,支持更多的安全后端等。

相关推荐
wait a minutes3 小时前
【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)
人工智能·机器学习·自动驾驶
聚客AI3 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
RaymondZhao3414 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng113314 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
强盛小灵通专卖员19 小时前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
计算机sci论文精选20 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
Christo321 小时前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
JXL18601 天前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉1 天前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM1 天前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库