第 8 课:密态引擎SPU框架介绍

本讲主要内容是SPU框架整体结构的介绍。

一、为何做SPU

以大模型预测场景为例,模型是公司的资产,提示词包含用户隐私,如何同时保护模型和提示词。利用隐私计算技术,用户将提示词加密,同时模型在加密环境里进行推理,可以同时保护模型和提示词。

由于数据是敏感且重要的,所以需要隐私计算。

隐私计算是一种高速发展中的技术,包括多方安全计算、同态加密、差分隐私、可信硬件等。基于密码学的隐私计算,提供了非常有限的计算能力,加密计算有易用性差(类型简单,加/乘/与/或等,算子比较底层),性能较差等挑战。SPU就是为了填补加密计算和高级编程语言之间的空白,可以提供较好的易用性(原生AI框架支持),以及较好的性能(编译器运行时协同优化)。

二、SPU简介

SPU是一个虚拟加密处理设备,类比CPU和GPU,从而支持上层的各种应用。SPU是一个虚拟的、安全的、多个参与方的、运算相对较慢的设备。

SPU架构从上至下,分为前端(复用AI前端、TF/JAX/PyTorch)、编译器(将前端产生的机器学习表达加入自定义的隐私保护语义,翻译到运行时。任何数据和密态变量进行计算,结果仍为密态变量。)、运行时(多种并发模型支持,多种协议支持,多部署模式支持)三部分。

SPU的编程界面,使用原生AI框架,使用JIT编译执行,生态无缝衔接,通过修改配置文件即可更改安全协议,无需代码修改。SPU作为一个虚拟设备,也提供了配套的工具链的支持(Profiling、Tracing,Debugging),从而对上层应用和下层协议进行针对性优化以及错误排查。

三、现状和展望

隐语开源生态,SPU支持PPML,支持联邦学习,支持SCQL。

SPU也可以用于前沿学术研究。

SPU作为AI和密码学之间的桥梁,希望可以进一步加速构建隐私计算的生态,例如通过SPU提供的原生Numpy API,构建安全sklearn-like机器学习库,构建安全pandas-like数据分析库,支持更多的安全后端等。

相关推荐
byzh_rc19 小时前
[机器学习从入门到入土] 自回归滑动平均ARMA
人工智能·机器学习·回归
Das119 小时前
【机器学习】10_特征选择与稀疏学习
人工智能·学习·机器学习
Aurora@Hui19 小时前
FactorAnalysisTool 因子分析工具
人工智能·算法·机器学习
GG向前冲19 小时前
【Python 金融量化】线性模型在AAPL股票数据的分析研究
大数据·python·机器学习·ai·金融
(; ̄ェ ̄)。19 小时前
机器学校入门(十三)C4.5 决策树,CART决策树
算法·决策树·机器学习
救救孩子把20 小时前
59-机器学习与大模型开发数学教程-5-6 Adam、RMSProp、AdaGrad 等自适应优化算法
人工智能·算法·机器学习
救救孩子把20 小时前
58-机器学习与大模型开发数学教程-5-5 牛顿法与拟牛顿法(BFGS、L-BFGS)
人工智能·机器学习
倔强的石头10620 小时前
假设空间与版本空间 —— 机器学习是 “猜规律” 的过程
人工智能·机器学习
永远都不秃头的程序员(互关)20 小时前
【决策树深度探索(五)】智慧之眼:信息增益,如何找到最佳决策问题?
算法·决策树·机器学习
劈星斩月20 小时前
机器学习(Machine Learning)系列
深度学习·神经网络·机器学习