第 8 课:密态引擎SPU框架介绍

本讲主要内容是SPU框架整体结构的介绍。

一、为何做SPU

以大模型预测场景为例,模型是公司的资产,提示词包含用户隐私,如何同时保护模型和提示词。利用隐私计算技术,用户将提示词加密,同时模型在加密环境里进行推理,可以同时保护模型和提示词。

由于数据是敏感且重要的,所以需要隐私计算。

隐私计算是一种高速发展中的技术,包括多方安全计算、同态加密、差分隐私、可信硬件等。基于密码学的隐私计算,提供了非常有限的计算能力,加密计算有易用性差(类型简单,加/乘/与/或等,算子比较底层),性能较差等挑战。SPU就是为了填补加密计算和高级编程语言之间的空白,可以提供较好的易用性(原生AI框架支持),以及较好的性能(编译器运行时协同优化)。

二、SPU简介

SPU是一个虚拟加密处理设备,类比CPU和GPU,从而支持上层的各种应用。SPU是一个虚拟的、安全的、多个参与方的、运算相对较慢的设备。

SPU架构从上至下,分为前端(复用AI前端、TF/JAX/PyTorch)、编译器(将前端产生的机器学习表达加入自定义的隐私保护语义,翻译到运行时。任何数据和密态变量进行计算,结果仍为密态变量。)、运行时(多种并发模型支持,多种协议支持,多部署模式支持)三部分。

SPU的编程界面,使用原生AI框架,使用JIT编译执行,生态无缝衔接,通过修改配置文件即可更改安全协议,无需代码修改。SPU作为一个虚拟设备,也提供了配套的工具链的支持(Profiling、Tracing,Debugging),从而对上层应用和下层协议进行针对性优化以及错误排查。

三、现状和展望

隐语开源生态,SPU支持PPML,支持联邦学习,支持SCQL。

SPU也可以用于前沿学术研究。

SPU作为AI和密码学之间的桥梁,希望可以进一步加速构建隐私计算的生态,例如通过SPU提供的原生Numpy API,构建安全sklearn-like机器学习库,构建安全pandas-like数据分析库,支持更多的安全后端等。

相关推荐
老蒋新思维1 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
Coding茶水间2 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
这是你的玩具车吗3 小时前
能和爸妈讲明白的大模型原理
前端·人工智能·机器学习
Salt_07285 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
liulanba7 小时前
YOLO-World 端到端详解
机器学习
liulanba7 小时前
YOLOv6 端到端详解
机器学习
rayufo8 小时前
对MNIST FASHION数据集训练的准确度的迭代提高
深度学习·机器学习
liulanba9 小时前
十大基础机器学习算法详解与实践
机器学习
冰西瓜60010 小时前
通俗易懂讲解马尔可夫模型
人工智能·机器学习
霖大侠10 小时前
Squeeze-and-Excitation Networks
人工智能·算法·机器学习·transformer