以Bert训练为例,测试torch不同的运行方式,并用torch.profile+HolisticTraceAnalysis分析性能瓶颈

以Bert训练为例,测试torch不同的运行方式,并用torch.profile+HolisticTraceAnalysis分析性能瓶颈

以Bert训练为例,测试torch不同的运行方式,并用torch.profile+HolisticTraceAnalysis分析性能瓶颈

1.参考链接:

2.性能对比

序号 运行方式 build耗时(s) warmup耗时(s) 运行耗时(w) 备注
1 普通模式 0.70 max:0.0791 min:0.0358 std:0.0126 mean:0.0586 CPU Bound
2 torch.cuda.CUDAGraph() 0.01 max:0.0109 min:0.0090 std:0.0006 mean:0.0094 Kernel Bound
3 torch.compile("cudagraphs") 0.7126 10.7256 max:3.9467 min:0.0197 std:1.1683 mean:0.4590
4 torch.compile("inductor") 0.0005 45.1444 max:5.9465 min:0.0389 std:1.7684 mean:0.6415

3.相关依赖或命令

bash 复制代码
# 安装pytorch
pip install torch==2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
 
# 安装HTA
git clone https://github.com/facebookresearch/HolisticTraceAnalysis.git
cd HolisticTraceAnalysis
git submodule update --init
pip install -r requirements.txt
pip install -e .
 
# 运行jupyter
pip install jupyter
jupyter notebook --allow-root --no-browser --ip=192.168.1.100 --port 8080

4.测试代码

python 复制代码
import os
import warnings
warnings.filterwarnings("ignore")
import copy
import sys
import torch
from tqdm import tqdm
from torch.profiler import profile
import time
from typing import Final, Any, Callable
import random
import numpy as np
import os
import requests
import importlib.util
import sys
import json
     
def download_module(url, destination_path):
    response = requests.get(url)
    response.raise_for_status()
    with open(destination_path, 'wb') as f:
        f.write(response.content)
 
def module_from_path(module_name, file_path):
    spec = importlib.util.spec_from_file_location(module_name, file_path)
    module = importlib.util.module_from_spec(spec)
    sys.modules[module_name] = module
    spec.loader.exec_module(module)
    return module
 
def load_or_download_module(module_url, module_name, cache_dir=".cache"):
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
    destination_path = os.path.join(cache_dir, module_name + ".py")
    if not os.path.isfile(destination_path):
        download_module(module_url, destination_path)
    module = module_from_path(module_name, destination_path)
    return module
 
import sys
sys.path.append(".cache/")
 
module_url = "https://raw.githubusercontent.com/NVIDIA/DeepLearningExamples/master/PyTorch/LanguageModeling/BERT/file_utils.py"
module_name = "file_utils"
load_or_download_module(module_url, module_name)
 
module_url = "https://raw.githubusercontent.com/NVIDIA/DeepLearningExamples/master/PyTorch/LanguageModeling/BERT/modeling.py"
module_name = "modeling"
modeling = load_or_download_module(module_url, module_name)
 
def fix_gelu_bug(fn):
    def wrapper(tensor, *args, **kwargs):
        return fn(tensor)
    return wrapper
torch.nn.functional.gelu=fix_gelu_bug(torch.nn.functional.gelu)
 
class SyncFreeStats :
    def __init__(self) :
        self.host_stats = {}
        self.device_stats = {}
        self.device_funcs = {}
 
    def add_stat(self, name, dtype=torch.int32, device_tensor=None, device_func=None) :
        if device_tensor is not None :
            assert dtype == device_tensor.dtype, "Error: dtype do not match: {} {}".format(dtype, device_tensor.dtype)
        self.host_stats[name] = torch.zeros(1, dtype=dtype).pin_memory()
        self.device_stats[name] = device_tensor
        self.device_funcs[name] = device_func
 
    def copy_from_device(self) :
        for name in self.host_stats.keys() :
            # Apply device function to device stat
            if self.device_stats[name] is not None and self.device_funcs[name] is not None:
                self.host_stats[name].copy_(self.device_funcs[name](self.device_stats[name]), non_blocking=True)
            elif self.device_stats[name] is not None :
                self.host_stats[name].copy_(self.device_stats[name], non_blocking=True)
            elif self.device_funcs[name] is not None :
                self.host_stats[name].copy_(self.device_funcs[name](), non_blocking=True)
 
    def host_stat(self, name) :
        assert name in self.host_stats
        return self.host_stats[name]
 
    def host_stat_value(self, name) :
        assert name in self.host_stats
        return self.host_stats[name].item()
 
    def update_host_stat(self, name, tensor) :
        self.host_stats[name] = tensor
 
    def device_stat(self, name) :
        assert self.device_stats[name] is not None
        return self.device_stats[name]
 
    def update_device_stat(self, name, tensor) :
        self.device_stats[name] = tensor
         
class BertPretrainingCriterion(torch.nn.Module):
    sequence_output_is_dense: Final[bool]
    def __init__(self, vocab_size, sequence_output_is_dense=False):
        super(BertPretrainingCriterion, self).__init__()
        self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
        self.vocab_size = vocab_size
        self.sequence_output_is_dense = sequence_output_is_dense
 
    def forward(self, prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels):
        if self.sequence_output_is_dense:
            # prediction_scores are already dense
            masked_lm_labels_flat = masked_lm_labels.view(-1)
            mlm_labels = masked_lm_labels_flat[masked_lm_labels_flat != -1]
            masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), mlm_labels.view(-1))
        else:
            masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), masked_lm_labels.view(-1))
        next_sentence_loss = self.loss_fn(seq_relationship_score.view(-1, 2), next_sentence_labels.view(-1))
        total_loss = masked_lm_loss + next_sentence_loss
        return total_loss
 
def setup_model_optimizer_data(device="cuda"):
 
    train_batch_size=1
    max_seq_length=128
 
    config=modeling.BertConfig(21128)
    sequence_output_is_dense=False
    model = modeling.BertForPreTraining(config, sequence_output_is_dense=sequence_output_is_dense)
    model=model.half()
    model.train().to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    criterion = BertPretrainingCriterion(config.vocab_size, sequence_output_is_dense=sequence_output_is_dense).to(device)
    batch = {
        'input_ids': torch.ones(train_batch_size, max_seq_length, dtype=torch.int64, device=device),
        'token_type_ids': torch.ones(train_batch_size, max_seq_length, dtype=torch.int64, device=device),
        'attention_mask': torch.ones(train_batch_size, max_seq_length, dtype=torch.int64, device=device),
        'labels': torch.ones(train_batch_size, max_seq_length, dtype=torch.int64, device=device),
        'next_sentence_labels': torch.ones(train_batch_size, dtype=torch.int64, device=device),
    }
    stats = SyncFreeStats()
    stats.add_stat('average_loss', dtype=torch.float32, device_tensor=torch.zeros(1, dtype=torch.float32, device=device))
     
    return model,optimizer,criterion,batch,stats
 
def train_step(model,optimizer,criterion,batch,stats):
    optimizer.zero_grad(set_to_none=True)
    prediction_scores,seq_relationship_score=model(input_ids=batch['input_ids'],
            token_type_ids=batch['token_type_ids'],
            attention_mask=batch['attention_mask'],
            masked_lm_labels=batch['labels'])
    loss = criterion(prediction_scores, seq_relationship_score, batch['labels'], batch['next_sentence_labels'])
    stats.device_stat('average_loss').add_(loss.detach())
    loss.backward()
    optimizer.step()  
     
def reset_seed():
    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.manual_seed(0)
      
def stat(data):
    return f"max:{np.max(data):.4f} min:{np.min(data):.4f} std:{np.std(data):.4f} mean:{np.mean(data):.4f}"
      
def prof_bert_native():
    reset_seed()
    activities=[torch.profiler.ProfilerActivity.CPU]
    activities.append(torch.profiler.ProfilerActivity.CUDA)
    model,optimizer,criterion,batch,stats=setup_model_optimizer_data()
     
    t0=time.time()
    train_step(model,optimizer,criterion,batch,stats)     
    torch.cuda.synchronize()
    t1=time.time()
    print(f"warmup:{t1-t0:.2f}")
     
    latency=[] 
    with profile(activities=activities,record_shapes=True,
                    with_stack=True,with_modules=True,
                    schedule=torch.profiler.schedule(wait=1,warmup=1,active=3,repeat=0),
                    with_flops=True,profile_memory=True) as prof:
        for i in range(10):
            t0=time.time()
            train_step(model,optimizer,criterion,batch,stats)     
            torch.cuda.synchronize()
            t1=time.time()
            latency.append(t1-t0)
            prof.step()
    stats.copy_from_device()      
    print(f"native average_loss:{stats.host_stat_value('average_loss'):.4f} {stat(latency)}")
     
    prof.export_chrome_trace("prof_bert_native.json")
 
def prof_bert_cudagraph():
    reset_seed()
 
    activities=[torch.profiler.ProfilerActivity.CPU]
    activities.append(torch.profiler.ProfilerActivity.CUDA)
    model,optimizer,criterion,batch,stats=setup_model_optimizer_data()
 
    # Warmup Steps - includes jitting fusions
    side_stream = torch.cuda.Stream()
    side_stream.wait_stream(torch.cuda.current_stream())
    with torch.cuda.stream(side_stream):
        for _ in range(11):
            train_step(model,optimizer,criterion,batch,stats)
    torch.cuda.current_stream().wait_stream(side_stream)
 
    # Capture Graph
    full_cudagraph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(full_cudagraph):
        train_step(model,optimizer,criterion,batch,stats)
     
    print("build done")
    t0=time.time()
    full_cudagraph.replay()
    torch.cuda.synchronize()
    t1=time.time()
    print(f"warmup:{t1-t0:.2f}")
    latency=[]
     
    with profile(activities=activities,record_shapes=True,
                    with_stack=True,with_modules=True,
                    schedule=torch.profiler.schedule(wait=1,warmup=1,active=3,repeat=0),
                    with_flops=True,profile_memory=True) as prof:
        for i in range(10):
            t0=time.time()
            full_cudagraph.replay()
            torch.cuda.synchronize()
            t1=time.time()
            latency.append(t1-t0)
            prof.step()
    stats.copy_from_device()           
    print(f"cudagraph average_loss:{stats.host_stat_value('average_loss'):.4f} {stat(latency)}")
    prof.export_chrome_trace("prof_bert_cudagraph.json")
 
def prof_bert_torchcompiler(backend):
    reset_seed()
    activities=[torch.profiler.ProfilerActivity.CPU]
    activities.append(torch.profiler.ProfilerActivity.CUDA)
    model,optimizer,criterion,batch,stats=setup_model_optimizer_data()
 
    latency=[]   
    t0=time.time()
    new_fn = torch.compile(train_step, backend=backend)
    t1=time.time()
    print(f"torchcompiler_{backend} build:{t1-t0:.4f}s")
    new_fn(model,optimizer,criterion,batch,stats)     
    torch.cuda.synchronize()
    t2=time.time()
    print(f"torchcompiler_{backend} warmup:{t2-t1:.4f}s")
     
    with profile(activities=activities,record_shapes=True,
                    with_stack=True,with_modules=True,
                    schedule=torch.profiler.schedule(wait=1,warmup=1,active=3,repeat=0),
                    with_flops=True,profile_memory=True) as prof:
        for i in range(10):
            t0=time.time()
            new_fn(model,optimizer,criterion,batch,stats)     
            torch.cuda.synchronize()
            t1=time.time()
            latency.append(t1-t0)
            prof.step()
             
    stats.copy_from_device()
    print(f"torchcompiler_{backend} average_loss:{stats.host_stat_value('average_loss'):.4f} {stat(latency)}")
    prof.export_chrome_trace(f"prof_bert_torchcompiler_{backend}.json")
 
os.environ['LOCAL_RANK']="0"
os.environ['RANK']="0"
os.environ['WORLD_SIZE']="1"
os.environ['MASTER_ADDR']="localhost"
os.environ['MASTER_PORT']="6006"
 
import torch.distributed as dist
dist.init_process_group(backend='nccl')
rank=torch.distributed.get_rank()
 
prof_bert_native()
prof_bert_cudagraph()
prof_bert_torchcompiler("cudagraphs")
prof_bert_torchcompiler("inductor")

5.HolisticTraceAnalysis代码

python 复制代码
#!/usr/bin/env python
# coding: utf-8
# In[25]:
import warnings
warnings.filterwarnings("ignore")
from hta.trace_analysis import TraceAnalysis
analyzer = TraceAnalysis(trace_dir = "./traces")
# In[26]:
temporal_breakdown_df = analyzer.get_temporal_breakdown()
# kernel_type_metrics_df, kernel_metrics_df = analyzer.get_gpu_kernel_breakdown()
# In[28]:
kernel_type_metrics_df
# In[29]:
kernel_metrics_df
# In[30]:
idle_time_df, interval_stats_df = analyzer.get_idle_time_breakdown(ranks=[0], visualize=True,\
                                                                   visualize_pctg = 1,
                                                                   show_idle_interval_stats=True)
# In[31]:
cuda_launch_kernel_stats = analyzer.get_cuda_kernel_launch_stats()
# In[32]:
memory_bw_series = analyzer.get_memory_bw_time_series()
# In[33]:
memory_bw_series
# In[34]:
ql_series = analyzer.get_queue_length_time_series()
# In[35]:
ql_series
# In[36]:
ql_summary = analyzer.get_queue_length_summary()
# In[37]:
ql_summary
# In[38]:
annotation = "ProfilerStep"
instance_id = (0)
cp_graph, success = analyzer.critical_path_analysis(rank = 0, annotation=annotation, instance_id=instance_id)
cp_graph.summary()
# In[39]:
analyzer.overlay_critical_path_analysis(0, cp_graph, output_dir='traces/overlaid')
# In[40]:
cuda_sequences_df = analyzer.get_frequent_cuda_kernel_sequences(operator_name="cu", output_dir = "/tmp/")
# In[42]:
cuda_sequences_df

6.可视化

A.优化前


B.优化后



相关推荐
唐某人丶15 分钟前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云32 分钟前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术34 分钟前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新1 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心1 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算1 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位1 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算2 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
聚客AI3 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar3 小时前
一文讲清 nn.Sequential 等容器类
人工智能