2025秋招NLP算法面试真题(十一)-Transformer的并行化

正文

本文主要谈一下关于 Transformer的并行化。文章比较短,适合大家碎片化阅读。

Decoder不用多说,没有并行,只能一个一个的解码,很类似于RNN,这个时刻的输入依赖于上一个时刻的输出。

对于Encoder侧:

首先,6个大的模块之间是串行的,一个模块计算的结果做为下一个模块的输入,互相之前有依赖关系。

从每个模块的角度来说,注意力层和前馈神经层这两个子模块单独来看都是可以并行的,不同单词之间是没有依赖关系的。

当然对于注意力层在做attention的时候会依赖别的时刻的输入,不过这个只需要在计算之前就可以提供。

然后注意力层和前馈神经层之间是串行,必须先完成注意力层计算再做前馈神经层。

有点绕,不知道有没有讲清楚。

简单讲,就是6个encoder之间是串行,每个encoder中的两个子模块之间是串行,子模块自身是可以并行的。

系列总结

整个Transformer这一块基本就是讲完了,基本上可以解决之前那个关于transformer面试题百分之八十的题目。

至于剩下的题目会放在之后别的模块去讲,比如 wordpiece model 会在总结机器翻译知识点的时候写一下,然后 GPT 会在总结词向量知识点的时候写一下。

写这个系列过程中,很多朋友也有私信我一些问题,交流过程中,对我自己帮助也很大,能回答的问题我都尽力回答了,也感谢大家的关注。平时工作挺忙的,尽量输出干货,也欢迎大家和我交流问题。

相关推荐
NEXT0642 分钟前
防抖(Debounce)与节流(Throttle)解析
前端·javascript·面试
兆子龙4 小时前
深入 ahooks 3.0 useRequest 源码:插件化架构的精妙设计
javascript·面试
maplewen.5 小时前
C++11 返回值优化
开发语言·c++·面试
UrbanJazzerati5 小时前
从零到一:用Python Tkinter打造专业的文件行删除工具(一)
后端·面试
小陈phd6 小时前
多模态大模型学习笔记(五)—— 神经网络激活函数完整指南
人工智能·笔记·神经网络·学习·自然语言处理
不想秃头的程序员7 小时前
Vue3 子传父全解析:从基础用法到实战避坑
前端·vue.js·面试
阿杰学AI7 小时前
AI核心知识100——大语言模型之 LM Arena(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·模型评测·lm arena
2501_901147837 小时前
幂函数实现的优化与工程思考笔记
笔记·算法·面试·职场和发展·php
maplewen.7 小时前
C++ 多态原理深入理解
开发语言·c++·面试