2025秋招NLP算法面试真题(十一)-Transformer的并行化

正文

本文主要谈一下关于 Transformer的并行化。文章比较短,适合大家碎片化阅读。

Decoder不用多说,没有并行,只能一个一个的解码,很类似于RNN,这个时刻的输入依赖于上一个时刻的输出。

对于Encoder侧:

首先,6个大的模块之间是串行的,一个模块计算的结果做为下一个模块的输入,互相之前有依赖关系。

从每个模块的角度来说,注意力层和前馈神经层这两个子模块单独来看都是可以并行的,不同单词之间是没有依赖关系的。

当然对于注意力层在做attention的时候会依赖别的时刻的输入,不过这个只需要在计算之前就可以提供。

然后注意力层和前馈神经层之间是串行,必须先完成注意力层计算再做前馈神经层。

有点绕,不知道有没有讲清楚。

简单讲,就是6个encoder之间是串行,每个encoder中的两个子模块之间是串行,子模块自身是可以并行的。

系列总结

整个Transformer这一块基本就是讲完了,基本上可以解决之前那个关于transformer面试题百分之八十的题目。

至于剩下的题目会放在之后别的模块去讲,比如 wordpiece model 会在总结机器翻译知识点的时候写一下,然后 GPT 会在总结词向量知识点的时候写一下。

写这个系列过程中,很多朋友也有私信我一些问题,交流过程中,对我自己帮助也很大,能回答的问题我都尽力回答了,也感谢大家的关注。平时工作挺忙的,尽量输出干货,也欢迎大家和我交流问题。

相关推荐
小任同学Alex43 分钟前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
陪学1 小时前
百度遭初创企业指控抄袭,维权还是碰瓷?
人工智能·百度·面试·职场和发展·产品运营
大数据编程之光3 小时前
Flink Standalone集群模式安装部署全攻略
java·大数据·开发语言·面试·flink
ifanatic5 小时前
[面试]-golang基础面试题总结
面试·职场和发展·golang
机器学习之心5 小时前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
程序猿进阶6 小时前
堆外内存泄露排查经历
java·jvm·后端·面试·性能优化·oom·内存泄露
余生H6 小时前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
代码不行的搬运工6 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
罗小罗同学6 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
长风清留扬7 小时前
一篇文章了解何为 “大数据治理“ 理论与实践
大数据·数据库·面试·数据治理