数据挖掘与分析——特征选择

  1. 数据读取

wine葡萄酒数据集是来自UCI的公开数据集,也scikit-learn库自带的数据集,它是对意大利同一地区种植的葡萄酒进行化学分析的结果,这些葡萄酒来自三个不同的品种。该分析确定了三种葡萄酒中每种葡萄酒中含有的13种成分的数量。

每行代表一种酒的样本,共有178个样本;一共有14列,其中,第一个属性是类标识符,分别是1/2/3来表示,代表葡萄酒的三个分类。后面的13列为每个样本的对应属性的样本值,分别是酒精、苹果酸、灰、灰分的碱度、镁、总酚、黄酮类化合物、非黄烷类酚类、原花色素、颜色强度、色调、稀释葡萄酒的OD280/OD315、脯氨酸。其中第1类有59个样本,第2类有71个样本,第3类有48个样本。

数据读取方法:

  1. 特征选择

单变量过滤法:

  1. 请使用方差阈值法对wine数据集进行特征选择,阈值设置为1。
python 复制代码
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.feature_selection import VarianceThreshold
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
# 使用方差阈值法进行特征选择
selector = VarianceThreshold(threshold=1)
X_selected = selector.fit_transform(X)
# 显示选择后的特征数量
print("方差阈值法特征选择后的特征数量:", X_selected.shape[1])
print(X_selected)
  1. 请使用卡方统计量法对wine数据集进行特征选择,选择的特征子集的大小为5。
python 复制代码
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
import pandas as pd
from sklearn.datasets import load_wine
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 使用卡方统计量法进行特征选择
selector = SelectKBest(chi2, k=5)
X_selected = selector.fit_transform(X, y)

# 显示选择后的特征数量
print("卡方统计量法特征选择后的特征数量:", X_selected.shape[1])
  1. 请使用互信息法wine数据集进行特征选择,选择的特征子集的大小为5。
python 复制代码
from sklearn.feature_selection import mutual_info_classif
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target
# 使用互信息法进行特征选择
selector = SelectKBest(mutual_info_classif, k=5)
X_selected = selector.fit_transform(X, y)
# 显示选择后的特征数量
print("互信息法特征选择后的特征数量:", X_selected.shape[1])
print(X_selected.shape)
print(X_selected)

嵌入法:

  1. 对wine数据集进行标准规范化。
  1. 对标准化后的数据集进行训练集和测试集的划分。
  1. 使用L1正则化的逻辑回归模型进行嵌入法特征选择。
python 复制代码
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 对数据集进行标准规范化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 使用L1正则化的逻辑回归模型进行嵌入法特征选择
model = LogisticRegression(penalty='l1', solver='liblinear')
model.fit(X_train, y_train)

# 输出选择的特征数量
print("L1正则化逻辑回归模型选择的特征数量:", sum(model.coef_[0] != 0))
  1. 嵌入式特征选择模型,选择的特征子集的大小为5。
  1. 嵌入式特征选择模型。
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 对数据集进行标准规范化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

model = LogisticRegression(penalty='l1', solver='liblinear')
model.fit(X_train, y_train)
# 使用嵌入式特征选择模型,选择的特征子集的大小为5
selector = SelectFromModel(model, max_features=5)
X_selected = selector.fit_transform(X_train, y_train)

# 显示选择后的特征数量
print("嵌入式特征选择模型选择的特征数量:", X_selected.shape[1])
print(X_selected.shape)
print(model)
相关推荐
鹿子沐几秒前
LlamaFactory微调效果与vllm部署效果不一致
人工智能·llama
Akamai中国23 分钟前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算·云服务
~~李木子~~25 分钟前
Windows软件自动扫描与分类工具 - 技术文档
windows·分类·数据挖掘
陈增林26 分钟前
基于PyQt5的AI文档处理工具
人工智能
BeingACoder36 分钟前
【SAA】SpringAI Alibaba学习笔记(二):提示词Prompt
java·人工智能·spring boot·笔记·prompt·saa·springai
Acrelhuang43 分钟前
覆盖全场景需求:Acrel-1000 变电站综合自动化系统的技术亮点与应用
大数据·网络·人工智能·笔记·物联网
LHZSMASH!1 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
Luke Ewin1 小时前
内网私有化分布式集群部署语音识别接口
人工智能·分布式·语音识别·asr·funasr·通话语音质检·区分说话人
萤丰信息1 小时前
智慧园区系统:开启园区管理与运营的新时代
java·大数据·人工智能·安全·智慧城市·智慧园区
Dfreedom.1 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数