数据挖掘与分析——特征选择

  1. 数据读取

wine葡萄酒数据集是来自UCI的公开数据集,也scikit-learn库自带的数据集,它是对意大利同一地区种植的葡萄酒进行化学分析的结果,这些葡萄酒来自三个不同的品种。该分析确定了三种葡萄酒中每种葡萄酒中含有的13种成分的数量。

每行代表一种酒的样本,共有178个样本;一共有14列,其中,第一个属性是类标识符,分别是1/2/3来表示,代表葡萄酒的三个分类。后面的13列为每个样本的对应属性的样本值,分别是酒精、苹果酸、灰、灰分的碱度、镁、总酚、黄酮类化合物、非黄烷类酚类、原花色素、颜色强度、色调、稀释葡萄酒的OD280/OD315、脯氨酸。其中第1类有59个样本,第2类有71个样本,第3类有48个样本。

数据读取方法:

  1. 特征选择

单变量过滤法:

  1. 请使用方差阈值法对wine数据集进行特征选择,阈值设置为1。
python 复制代码
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.feature_selection import VarianceThreshold
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
# 使用方差阈值法进行特征选择
selector = VarianceThreshold(threshold=1)
X_selected = selector.fit_transform(X)
# 显示选择后的特征数量
print("方差阈值法特征选择后的特征数量:", X_selected.shape[1])
print(X_selected)
  1. 请使用卡方统计量法对wine数据集进行特征选择,选择的特征子集的大小为5。
python 复制代码
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
import pandas as pd
from sklearn.datasets import load_wine
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 使用卡方统计量法进行特征选择
selector = SelectKBest(chi2, k=5)
X_selected = selector.fit_transform(X, y)

# 显示选择后的特征数量
print("卡方统计量法特征选择后的特征数量:", X_selected.shape[1])
  1. 请使用互信息法wine数据集进行特征选择,选择的特征子集的大小为5。
python 复制代码
from sklearn.feature_selection import mutual_info_classif
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target
# 使用互信息法进行特征选择
selector = SelectKBest(mutual_info_classif, k=5)
X_selected = selector.fit_transform(X, y)
# 显示选择后的特征数量
print("互信息法特征选择后的特征数量:", X_selected.shape[1])
print(X_selected.shape)
print(X_selected)

嵌入法:

  1. 对wine数据集进行标准规范化。
  1. 对标准化后的数据集进行训练集和测试集的划分。
  1. 使用L1正则化的逻辑回归模型进行嵌入法特征选择。
python 复制代码
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 对数据集进行标准规范化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 使用L1正则化的逻辑回归模型进行嵌入法特征选择
model = LogisticRegression(penalty='l1', solver='liblinear')
model.fit(X_train, y_train)

# 输出选择的特征数量
print("L1正则化逻辑回归模型选择的特征数量:", sum(model.coef_[0] != 0))
  1. 嵌入式特征选择模型,选择的特征子集的大小为5。
  1. 嵌入式特征选择模型。
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 设置pandas的显示选项,使输出不被省略
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# 读取wine数据集
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = wine.target

# 对数据集进行标准规范化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

model = LogisticRegression(penalty='l1', solver='liblinear')
model.fit(X_train, y_train)
# 使用嵌入式特征选择模型,选择的特征子集的大小为5
selector = SelectFromModel(model, max_features=5)
X_selected = selector.fit_transform(X_train, y_train)

# 显示选择后的特征数量
print("嵌入式特征选择模型选择的特征数量:", X_selected.shape[1])
print(X_selected.shape)
print(model)
相关推荐
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile4 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5774 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥4 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7254 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai