【详细】CNN中的卷积计算是什么-实例讲解

本文来自《老饼讲解-BP神经网络》www.bbbdata.com/

卷积计算是CNN中最基本的计算,它是卷积层最重要的组成部分,

下面讲讲CNN的卷积计算过程是什么样的,包括基础卷积计算、多通道卷积计算以及pytorch中的卷积计算。

一、 CNN的基础卷积计算

卷积层是卷积神经网络中最基础的层,基础卷积的计算就是通过一个卷积核对输入进行卷积计算

1.1.一个例子了解CNN的卷积计算是什么

要了解什么是CNN的卷积基础计算,直接通过一个例子来算一算,就一清二楚。 一个卷积计算结果示例如下:

下面详细讲讲上面的卷积结果的具体计算过程:

卷积层中的卷积核就是一个矩阵,直观来看它就是一个窗口,卷积窗口一般为正方形,即长宽一致, 卷积运算通过从左到右,从上往下移动卷积核窗口,将窗口覆盖的每一小块输入进行加权,作为输出

1.2.卷积层的生物意义

卷积核在生物上的意义就相当于动物的眼睛(接受器),

卷积核的大小就相当于眼睛的视野范围(接受野),卷积核的权重就相当于眼睛每一处的接收权重 由于视野有限,所以需要通过逐步移动来查看所有内容,其中眼睛移动的步幅就是卷积的步幅

二、卷积的拓展:多输入通道与多输出通道

2.1.多输入通道卷积

卷积计算支持多通道的输入,当输入为k个通道的时,卷积核为3维矩阵,第3维与输入通道保持一致

2.2.多输出通道卷积

卷积计算也支持多通道输出,需要输出多少个通道,就使用多少个卷积核就可以了

三、卷积的实现

3.1.pytorch实现卷积计算-例子

pytorch中使用torch.nn.Conv2d函数来实现卷积的计算 以上述卷积为例,在pytorch中可以如下实现:

python 复制代码
import torch
X =  torch.tensor([[[[1,3,1,2],[2,6,8,5],[4,2,1,0]]]], dtype=torch.float32)    # 输入数据
c = torch.nn.Conv2d(1, 1, kernel_size=(2,2),bias = False)                      # 初始化卷积类
c.weight.data =torch.tensor([[[[1,2],[2,0]]]], dtype=torch.float32)            # 设置权重 
out = c(X)                                                                     # 对输入进行卷积计算
#-------------打印结果-----------------------
print('输入数据:',X)                 
print('卷积核:',c.weight.data)
print('卷积结果:',out)

运行结果如下:

3.2.Conv2d函数的使用方法

Conv2d函数的完整入参如下:

python 复制代码
torch.nn.Conv2d(in_channels
                ,out_channels
                ,kernel_size
                ,stride       = 1
                ,padding      = 0
                ,dilation     = 1
                ,groups       = 1
                ,bias         = True
                ,padding_mode = 'zeros'
                ,device       = None
                ,dtype        = None)

各个参数的解释如下:

python 复制代码
in_channels   (int) :图象的通道数,也就是决定卷积核的通道数

out_channels (int) :卷积输出的通道数,也就是用多少个卷积核

kernel_size (int/tuple):卷积核的大小,输入5指5*5的卷积核,输入(3,4)指3*4的卷积核

stride (int/tuple):卷积核的步距

padding(int/tuple/str):边缘填充的象素数,5指上下左右都补充5个象素,(3,4)代表上下补充3象素,左右补3象素

padding_mode (str) :象素填充的方式,可选择项- 'zeros', 'reflect', 'replicate','circular'

dilation(int/tuple):"扩张卷积"的专用参数-扩张率,控制kernel各点之间的间隔数量

groups(int):Number of blocked connections from input channels to output channels. Default: 1

bias(bool):是否对卷积结果添加偏置

*详细可进一步查看 《Conv2d的官方说明》


相关链接:

《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

相关推荐
蒋星熠1 小时前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
天下弈星~3 小时前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
暮小暮4 小时前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt
七元权4 小时前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
人类发明了工具4 小时前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
CoovallyAIHub4 小时前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub4 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
大千AI助手6 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
盼小辉丶8 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
Tiger Z9 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程