Python爬虫入门:从零到数据采集

Python爬虫基础指南

Python爬虫是自动化获取网络数据的技术,广泛应用于数据采集、市场分析等领域。以下是核心实现步骤:

1. 核心库选择
python 复制代码
import requests  # 发送HTTP请求
from bs4 import BeautifulSoup  # HTML解析
import pandas as pd  # 数据存储
2. 基础爬取流程
python 复制代码
# 发送请求
response = requests.get("https://example.com/books")
response.encoding = 'utf-8'  # 设置编码

# 解析HTML
soup = BeautifulSoup(response.text, 'html.parser')

# 数据提取示例
book_titles = [h2.text for h2 in soup.select('.book-title')]
book_prices = [float(div.text.strip('¥')) 
               for div in soup.select('.price')]

# 存储数据
df = pd.DataFrame({'书名': book_titles, '价格': book_prices})
df.to_csv('book_data.csv', index=False)
3. 关键技巧
  • 反爬应对

    python 复制代码
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
        'Cookie': 'sessionid=abc123'
    }
    response = requests.get(url, headers=headers)
  • 动态页面处理(使用Selenium):

    python 复制代码
    from selenium import webdriver
    driver = webdriver.Chrome()
    driver.get(url)
    dynamic_content = driver.find_element_by_class('js-loaded-data').text
4. 完整案例:豆瓣图书爬虫
python 复制代码
def douban_spider():
    url = "https://book.douban.com/top250"
    res = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'})
    soup = BeautifulSoup(res.text, 'lxml')
    
    books = []
    for item in soup.select('.item'):
        title = item.select_one('.pl2 a')['title']
        rating = item.select_one('.rating_nums').text
        books.append((title, float(rating)))
    
    return pd.DataFrame(books, columns=['书名', '评分'])

df = douban_spider()
df.to_excel('豆瓣图书TOP250.xlsx')
5. 注意事项
  1. 遵守规则

    • 检查robots.txt(如https://site.com/robots.txt
    • 设置请求间隔:time.sleep(random.uniform(1,3))
  2. 异常处理

    python 复制代码
    try:
        response = requests.get(url, timeout=10)
    except (requests.ConnectionError, requests.Timeout) as e:
        print(f"请求失败: {str(e)}")
  3. 数据清洗

    python 复制代码
    # 去除空白字符
    clean_text = re.sub(r'\s+', ' ', raw_text).strip()

提示:对于复杂网站建议使用Scrapy框架,其内置的异步处理、管道机制和中间件能显著提升效率。

相关推荐
小途软件11 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者12 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai
薛不痒12 小时前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
棒棒的皮皮14 小时前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉
AI街潜水的八角16 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
资深web全栈开发17 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
540_54017 小时前
ADVANCE Day45
人工智能·python·深度学习
云和数据.ChenGuang18 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
纪伊路上盛名在18 小时前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件18 小时前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型