Hadoop 面试题(十)

1. 简述下列关于Hadoop命令中,命令执行成功返回0,执行失败返回-1,下列命令返回-1的是 ?

text 复制代码
A:hadoop fs -mv /user/hadoop/file1 /user/hadoop/file2
B:hdfs dfs -mv hdfs:///testData file:///tmp/testData
C:hadoop fs -put localfile hdfs://host:port/hadoop/hadoopfile
D:hadoop fs -put localfile /user/hadoop/hadoopfile

在Hadoop中,命令执行成功通常返回0,执行失败返回非0值,通常是-1或其他错误代码。根据给出的命令,返回-1的可能是:

B:hdfs dfs -mv hdfs:///testData file:///tmp/testData - 这个命令尝试将HDFS上的文件或目录移动到本地文件系统,如果因为权限问题、路径错误或目标位置不允许写入等原因导致移动失败,命令将返回-1。

其他选项的说明:

A:hadoop fs -mv /user/hadoop/file1 /user/hadoop/file2 - 如果file1存在,并且用户有权限移动文件到file2的位置,这个命令通常会成功执行并返回0。

C:hadoop fs -put localfile hdfs://host:port/hadoop/hadoopfile - 这个命令将本地文件上传到HDFS上指定的路径。如果路径正确,并且用户有相应的写入权限,命令将执行成功并返回0。

D:hadoop fs -put localfile /user/hadoop/hadoopfile - 类似于C,如果本地文件localfile存在,并且用户有权限写入HDFS的/user/hadoop/目录,这个命令也会成功执行并返回0。

命令返回-1可能是由于多种原因,包括但不限于路径错误、权限不足、网络问题或Hadoop服务未运行等。具体错误需要结合命令执行时的上下文和错误信息来判断。

2. 关于DataNode描述中,不正确的是 ?

text 复制代码
A:DataNode负责管理连接到节点的存储(一个集群中可以有多个节点)。
B:为了减轻NameNode的负担,DataNode会在启动时的上报来更新其在NameNode上的映射表
C:DataNode之间不会相互通信,NameNode只会与DataNode进行通信
D:Hadoop集群中存储数据的节点,每个节点都会运行一个DataNode守护进程

描述不正确的是:

B:为了减轻NameNode的负担,DataNode会在启动时的上报来更新其在NameNode上的映射表 - 这个描述不完全准确。DataNode不仅仅在启动时向NameNode报告其状态和存储的数据块信息,而且还会定期发送心跳和块报告信息给NameNode,以保持其映射表的更新,而不是仅在启动时上报。

其他选项的说明:

A:DataNode负责管理连接到节点的存储(一个集群中可以有多个节点)。 - 这个描述是正确的。DataNode负责管理其所在节点的存储,并且Hadoop集群可以包含多个DataNode。

C:DataNode之间不会相互通信,NameNode只会与DataNode进行通信 - 这个描述是正确的。在HDFS中,DataNode通常不直接相互通信,而是通过NameNode来进行管理和协调。

D:Hadoop集群中存储数据的节点,每个节点都会运行一个DataNode守护进程 - 这个描述是正确的。在Hadoop集群中,每个存储数据的节点都运行着一个DataNode守护进程,用于存储实际的数据块并响应来自NameNode的命令。

3. 简述关于Hadoop常用命令中,touchz和Linux系统的touch命令的描述正确的是 ?

text 复制代码
A:没区别
B:touchz不能新建文件
C:touchz不可用于更新文件的修改日期
D:touch不可用于更新文件的修改日期

描述正确的是:

B:touchz不能新建文件 - touchz命令在Hadoop文件系统中用于创建一个新的空文件,如果文件已经存在,它不会改变文件的内容或最后修改时间。如果文件不存在,touchz会创建一个新文件。

其他选项的说明:

A:没区别 - 这个描述是错误的。Hadoop的touchz命令与Linux系统的touch命令在行为上有所不同,特别是在处理文件不存在时的情况。

C:touchz不可用于更新文件的修改日期 - 这个描述是错误的。touchz可以用于更新文件的最后访问时间和最后修改时间,但前提是文件已经存在。

D:touch不可用于更新文件的修改日期 - 这个描述是错误的。Linux系统中的touch命令不仅可以创建新文件,还可以更新现有文件的最后访问和最后修改时间。

4. 简述Hadoop和Hadoop生态圈的描述中,正确的是 ?

text 复制代码
A:与Hadoop相比,Hadoop生态圈是指Hadoop框架本身
B:Hadoop生态圈,不仅包含Hadoop,还包括保证Hadoop框架正常高效运行的其他框架
C:常见的Hadoop生态圈组件有ZooKeeper、Flume、Redis、Hive、Flink等
D:Hadoop含义范围大于Hadoop生态圈

正确的描述是:

B:Hadoop生态圈,不仅包含Hadoop,还包括保证Hadoop框架正常高效运行的其他框架 - 这个描述是正确的。Hadoop生态圈指的是围绕Hadoop核心框架构建的一系列工具和框架,它们共同工作以提供更完整的大数据处理解决方案。

其他选项的说明:

A:与Hadoop相比,Hadoop生态圈是指Hadoop框架本身 - 这个描述是错误的。Hadoop生态圈不是指Hadoop框架本身,而是指包括Hadoop在内的一系列相关工具和框架。

C:常见的Hadoop生态圈组件有ZooKeeper、Flume、Redis、Hive、Flink等 - 这个描述部分正确,但Redis通常不被归类为Hadoop生态圈的一部分,而是一个独立的键值存储数据库系统。其他组件如ZooKeeper、Flume、Hive、Flink确实是Hadoop生态圈的一部分。

D:Hadoop含义范围大于Hadoop生态圈 - 这个描述是错误的。Hadoop通常指的是Hadoop框架本身,而Hadoop生态圈指的是包括Hadoop在内的更广泛的系统和工具集合。因此,Hadoop生态圈的含义范围大于Hadoop本身。

5. 简述关于安全模式的描述错误的是() ?

text 复制代码
A:NameNode在启动时会自动进入安全模式
B:NameNode只有在安全启动模式下才会进入安全模式
C:安全模式是一种状态,文件系统不允许有任何修改
D:进入安全模式后,系统会显示NameNode in safe mode,说明系统正在处于安全模式

描述错误的是:

B:NameNode只有在安全启动模式下才会进入安全模式 - 这个描述是错误的。NameNode可以在配置的条件下自动进入安全模式,不一定是因为安全启动模式。例如,在启动时如果没有收到足够多的DataNode心跳,或者文件系统损坏时,NameNode也可能进入安全模式。

其他选项的说明:

A:NameNode在启动时会自动进入安全模式 - 这个描述是正确的。NameNode在启动时可以自动进入安全模式,以确保在系统稳定前不接受修改操作。

C:安全模式是一种状态,文件系统不允许有任何修改 - 这个描述是正确的。在安全模式下,HDFS文件系统不接受任何修改操作,以保护数据的完整性。

D:进入安全模式后,系统会显示NameNode in safe mode,说明系统正在处于安全模式 - 这个描述是正确的。当NameNode处于安全模式时,通常会有明确的状态信息表明系统正在处于安全模式。

6. 简述有关Hadoop系统小文件问题的描述错误的是 ?

text 复制代码
A:Hadoop上大量HDFS元数据信息存储在NameNode内存中,因此过多的小文件必定会压垮NameNode的内存
B:Hadoop中小文件问题无法在Client解决,只能在DataNode上做文件合并
C:使用Hadoop的CombineFileInputFormat可实现小文件的合并
D:Client上传文件时,可以执行一定的策略先合并

描述错误的是:

B:Hadoop中小文件问题无法在Client解决,只能在DataNode上做文件合并 - 这个描述是错误的。小文件问题可以在Client端通过各种策略解决,例如,在上传到HDFS之前,Client可以合并小文件成为一个大文件,或者使用SequenceFile等格式来减少元数据的数量。此外,Hadoop也提供了工具如CombineFileInputFormat来在MapReduce作业中处理小文件问题,这可以在DataNode上进行,但策略制定和一些预处理操作可以在Client端完成。

其他选项的说明:

A:Hadoop上大量HDFS元数据信息存储在NameNode内存中,因此过多的小文件必定会压垮NameNode的内存 - 这个描述是正确的。HDFS的元数据确实存储在NameNode的内存中,大量的小文件会消耗大量元数据存储空间,可能会影响NameNode的性能。

C:使用Hadoop的CombineFileInputFormat可实现小文件的合并 - 这个描述是正确的。CombineFileInputFormat是Hadoop提供的一个工具,可以在MapReduce作业中将多个小文件作为一个大的输入分片来处理,从而减少Map任务的数量。

D:Client上传文件时,可以执行一定的策略先合并 - 这个描述是正确的。在Client端上传文件到HDFS之前,可以执行合并策略,比如使用Hadoop的SequenceFile或者在本地合并文件,以减少小文件的数量。

相关推荐
xiaogai_gai1 小时前
钉钉通讯录与金蝶云星空无缝集成的技术实现方法
大数据·数据库·钉钉
TDengine (老段)3 小时前
TDengine 中集群维护
大数据·运维·数据库·时序数据库·tdengine·涛思数据·物联
ErizJ4 小时前
Kafka|基础入门
分布式·kafka·消息队列·mq
黑客笔记4 小时前
「读书报告」Spark实时大数据分析
大数据·分布式·spark
Elastic 中国社区官方博客4 小时前
Elasticsearch Synthetic _source
大数据·运维·elasticsearch·搜索引擎·全文检索·可用性测试
aqi00008B5 小时前
Kafka自定义分区策略实战避坑指南
分布式·kafka·分区策略·原子类
小红的布丁7 小时前
Elasticsearch 节点角色详解及协调节点请求策略
大数据·elasticsearch·搜索引擎·全文检索
电商API_180079052477 小时前
批量获取电商商品数据的解决方案|API接口自动化商品采集|item_get 接口详解
java·大数据·前端·爬虫·数据挖掘·数据分析·自动化
计算机毕设定制辅导-无忧学长7 小时前
RabbitMQ 集群与高可用方案设计(二)
分布式·rabbitmq·ruby
寻找沙漠的人7 小时前
RabbitMQ 概述与安装
分布式·rabbitmq