昇思25天学习打卡营第5天|数据变换Transforms

数据变换 Transforms

在完成数据加载后,还应该对数据进行预处理。之前在数据集篇介绍过map函数,这里的transform就是和map一起使用的。transform有针对图像、文本、音频等不同类型的,并且也支持lambda函数。

环境配置

python 复制代码
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

基础变换

以下由图像变换和文字变换展开。

Vision transform

Compose是接受一个数据增强操作序列,再将其组合成单个数据增强操作。(实际上就是做组合)

python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)

train_dataset = train_dataset.map(composed, 'image')

之前简单介绍过上面的三个操作。

  • rescale 调整图像像素值,包括rescale 缩放因子、shift 平移因子

  • 对于每个像素都根据这两个参数进行调整 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputi∗rescale+shift。

  • normalize 输入图像归一化,包括 mean 通道均值、std通道标准差、is_hwc 输入图像格式(是bool值,True为(height, width, channel),False为(channel, height, width))

  • o u t p u t c = i n p u t c − m e a n c s t d c output_{c} = \frac{input_{c} - mean_{c}}{std_{c}} outputc=stdcinputc−meanc,其中 c c c代表通道索引。

  • HWC2CHW 转换图片格式,(height, width, channel)或(channel, height, width)互转。

Text transform

文本数据需要做分词、词表构建等操作

  • PythonTokenizer
python 复制代码
def my_tokenizer(content):
    return content.split()
# texts 内容是 'Welcome to Beijing'
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
# 分词后变成了 'Welcome', 'to', 'Beijing'
  • Lookup
    词表映射变换,用来将Token转换为Index。在此之前需要先构建词表。可以使用已有的词表或者使用Vocab生成词表。
python 复制代码
# 从数据集里构建词表
vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())
# {'to': 2, 'Beijing': 0, 'Welcome': 1}

# 词表生成后再查询索引
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
# [Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]
python 复制代码
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
# 输出 2 4 6

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))
# 输出 6 18 38

总结

本节学习了图片和文字表的一些转换的基本操作

打卡凭证

相关推荐
web3探路者24 分钟前
2024年 Web3开发学习路线全指南
学习·web3·区块链·智能合约·软件开发·dapp开发·公司开发
Angindem27 分钟前
Redis 学习笔记
redis·笔记·学习
kali-Myon29 分钟前
ctfshow-web入门-SSRF(web351-web360)
学习·安全·web安全·php·ssrf
Mephisto.java37 分钟前
【大数据学习 | flume】flume之常见的sink组件
大数据·学习·flume
张焚雪1 小时前
关于强化学习的一份介绍
人工智能·学习·算法·机器学习
小登ai学习1 小时前
框架学习03-Spring 七大核心模块
学习·spring·oracle
矿矿不想吃饭1 小时前
GRE做题笔记(零散的个人经验)
经验分享·笔记·学习
AI视觉网奇1 小时前
视频质量评价学习笔记
笔记·学习
优橙教育2 小时前
5G与4G互通的桥梁:N26接口
网络·学习·5g
cwtlw2 小时前
java学习记录05
java·开发语言·学习