昇思25天学习打卡营第5天|数据变换Transforms

数据变换 Transforms

在完成数据加载后,还应该对数据进行预处理。之前在数据集篇介绍过map函数,这里的transform就是和map一起使用的。transform有针对图像、文本、音频等不同类型的,并且也支持lambda函数。

环境配置

python 复制代码
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

基础变换

以下由图像变换和文字变换展开。

Vision transform

Compose是接受一个数据增强操作序列,再将其组合成单个数据增强操作。(实际上就是做组合)

python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)

train_dataset = train_dataset.map(composed, 'image')

之前简单介绍过上面的三个操作。

  • rescale 调整图像像素值,包括rescale 缩放因子、shift 平移因子

  • 对于每个像素都根据这两个参数进行调整 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputi∗rescale+shift。

  • normalize 输入图像归一化,包括 mean 通道均值、std通道标准差、is_hwc 输入图像格式(是bool值,True为(height, width, channel),False为(channel, height, width))

  • o u t p u t c = i n p u t c − m e a n c s t d c output_{c} = \frac{input_{c} - mean_{c}}{std_{c}} outputc=stdcinputc−meanc,其中 c c c代表通道索引。

  • HWC2CHW 转换图片格式,(height, width, channel)或(channel, height, width)互转。

Text transform

文本数据需要做分词、词表构建等操作

  • PythonTokenizer
python 复制代码
def my_tokenizer(content):
    return content.split()
# texts 内容是 'Welcome to Beijing'
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
# 分词后变成了 'Welcome', 'to', 'Beijing'
  • Lookup
    词表映射变换,用来将Token转换为Index。在此之前需要先构建词表。可以使用已有的词表或者使用Vocab生成词表。
python 复制代码
# 从数据集里构建词表
vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())
# {'to': 2, 'Beijing': 0, 'Welcome': 1}

# 词表生成后再查询索引
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
# [Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]
python 复制代码
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
# 输出 2 4 6

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))
# 输出 6 18 38

总结

本节学习了图片和文字表的一些转换的基本操作

打卡凭证

相关推荐
幻奏岚音16 分钟前
统计学(第8版)——假设检验学习笔记(考试用)
笔记·学习·算法
nenchoumi311929 分钟前
UE5 学习系列(一)创建一个游戏工程
c++·学习·游戏·ue5
crary,记忆40 分钟前
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
前端·学习·webpack
2301_7902258843 分钟前
unity加载资源学习笔记
笔记·学习
重庆小透明1 小时前
【从零学习JVM|第三篇】类的生命周期(高频面试题)
java·jvm·后端·学习
我是初九3 小时前
【李沐-动手学深度学习v2】1.Colab学习环境配置
人工智能·python·学习·colab
KENYCHEN奉孝3 小时前
Django 5 学习笔记总纲
笔记·学习·django
蒙奇D索大4 小时前
【11408学习记录】考研数学攻坚:行列式本质、性质与计算全突破
笔记·学习·线性代数·考研·机器学习·改行学it
moxiaoran57534 小时前
uni-app学习笔记二十四--showLoading和showModal的用法
笔记·学习·uni-app
DartistCode5 小时前
动手学深度学习pytorch(第一版)学习笔记汇总
pytorch·深度学习·学习