昇思25天学习打卡营第5天|数据变换Transforms

数据变换 Transforms

在完成数据加载后,还应该对数据进行预处理。之前在数据集篇介绍过map函数,这里的transform就是和map一起使用的。transform有针对图像、文本、音频等不同类型的,并且也支持lambda函数。

环境配置

python 复制代码
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

基础变换

以下由图像变换和文字变换展开。

Vision transform

Compose是接受一个数据增强操作序列,再将其组合成单个数据增强操作。(实际上就是做组合)

python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)

train_dataset = train_dataset.map(composed, 'image')

之前简单介绍过上面的三个操作。

  • rescale 调整图像像素值,包括rescale 缩放因子、shift 平移因子

  • 对于每个像素都根据这两个参数进行调整 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputi∗rescale+shift。

  • normalize 输入图像归一化,包括 mean 通道均值、std通道标准差、is_hwc 输入图像格式(是bool值,True为(height, width, channel),False为(channel, height, width))

  • o u t p u t c = i n p u t c − m e a n c s t d c output_{c} = \frac{input_{c} - mean_{c}}{std_{c}} outputc=stdcinputc−meanc,其中 c c c代表通道索引。

  • HWC2CHW 转换图片格式,(height, width, channel)或(channel, height, width)互转。

Text transform

文本数据需要做分词、词表构建等操作

  • PythonTokenizer
python 复制代码
def my_tokenizer(content):
    return content.split()
# texts 内容是 'Welcome to Beijing'
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
# 分词后变成了 'Welcome', 'to', 'Beijing'
  • Lookup
    词表映射变换,用来将Token转换为Index。在此之前需要先构建词表。可以使用已有的词表或者使用Vocab生成词表。
python 复制代码
# 从数据集里构建词表
vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())
# {'to': 2, 'Beijing': 0, 'Welcome': 1}

# 词表生成后再查询索引
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
# [Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]
python 复制代码
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
# 输出 2 4 6

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))
# 输出 6 18 38

总结

本节学习了图片和文字表的一些转换的基本操作

打卡凭证

相关推荐
序属秋秋秋27 分钟前
《C++初阶之STL》【泛型编程 + STL简介】
开发语言·c++·笔记·学习
Chef_Chen2 小时前
从0开始学习计算机视觉--Day09--卷积与池化
深度学习·学习·计算机视觉
fengye2071612 小时前
板凳-------Mysql cookbook学习 (十一--------10)
学习·mysql·adb
西西西仓鼠9 小时前
python学习打卡:DAY 40 训练和测试的规范写法
学习
Magnetic_h9 小时前
【iOS】方法与消息底层分析
笔记·学习·macos·ios·objective-c·cocoa
今天背单词了吗98010 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
DKPT11 小时前
Java设计模式之行为型模式(观察者模式)介绍与说明
java·笔记·学习·观察者模式·设计模式
future141212 小时前
C#进阶学习日记
数据结构·学习
lxsy13 小时前
spring-ai-alibaba 1.0.0.2 学习(十六)——多模态
人工智能·学习·ai-alibaba
xian_wwq13 小时前
【学习笔记】Nginx常用安全配置
笔记·学习·nginx