基于学习的人工智能(7)机器学习基本框架

机器学习作为实现人工智能的核心方法,通过特定算法从数据中自主学习,获得完成目标任务的技能。

与传统基于知识的方法相比,机器学习有可能突破人类现有知识的上限,发现人类尚未察觉的新规律、新方案,甚至展现出"超人"般的智能。

如今,人工智能展现出的强大能力------包括人们常谈论的AI 威胁,很大程度上源于机器学习:只有通过自主学习的机器,才有可能超越其创造者,具备难以预料的强大能力。

样例:区分水果

目标:对苹果和桔子进行分类, 将这一目标表示为数学形式,即希望分类正确率越高越好,或错误率越低越好。

知识:例如,"又大又红的更可能是苹果,而较小且颜色偏橙黄色的是桔子"。

模型:构建一个简单模型,如 Y=a × 颜色 + b × 大小,其中 a 和 b 为待学习的参数。

数据:收集苹果和桔子的样本,并分别标记(例如,苹果标记为 T=1,桔子标记为 T=0)。算法:通过调整 a 和 b 的值,使得预测值 Y 尽可能接近标记 T。

完成学习后,就得到了一个能够对苹果和桔子进行分类的模型。

图中的蓝色直线代表模型对应的分类边界,上方为苹果,下方为桔子。对于新样本,只需判断其位于分类边界的哪一侧,即可确定其归属。

知识卡片

机器学习是利用恰当的算法,从数据中获得经验,对基于知识设计的初始模型进行改进,从而更有效地完成任务目标的方法。

机器学习的主要成份包括:

知识: 提供大框架、设计准则、初始模型结构。例如,图像中物体的类别具有空间不变性

模型: 是知识累积的场所。例如,图像识别所用的卷积神经网络

数据: 是学习的粮食,是知识源。例如,大量带标签的图像数据集。

目标: 是学习的方向,定义了系统要优化的指标。例如,最小化图像分类错误率

算法: 是学习的具体步骤。例如,反向传播算法

相关推荐
Suahi1 分钟前
【HuggingFace LLM】规范化与预分词(BPE、WordPiece以及Unigram)
大数据·人工智能
元智启6 分钟前
企业 AI 应用进入 “能力解耦时代”:模块化重构 AI 落地新范式
大数据·人工智能·重构
RockHopper20256 分钟前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知
小真zzz6 分钟前
【2026新体验】ChatPPT的AI智能路演评测:PPT总结和问答都变的易如反掌
大数据·人工智能·ai·powerpoint·ppt·chatppt
wenzhangli77 分钟前
Ooder SkillFlow:破解 AI 编程冲击,重构企业级开发全流程
大数据·人工智能
H79987424216 分钟前
ERP管理系统软件推荐:聚焦中小制造,三款高适配MES系统深度对比与选择策略
大数据·人工智能·制造
●VON19 分钟前
智能暗战:AI 安全攻防实战全景解析
人工智能·学习·安全·von
Boxsc_midnight20 分钟前
【DaSiWa参数调优】DaSiWa-WAN 2.2 I2V 14B 模型的使用攻略和参数调优说明
人工智能·aigc·视频
微尘hjx20 分钟前
【深度学习02】YOLO模型的数据集、训练、验证、预测、导出
人工智能·python·深度学习·yolo·机器学习·训练·yolo11
小北方城市网22 分钟前
GEO 全场景智能生态:自适应架构重构与极限算力协同落地
开发语言·人工智能·python·重构·架构·量子计算