基于学习的人工智能(7)机器学习基本框架

机器学习作为实现人工智能的核心方法,通过特定算法从数据中自主学习,获得完成目标任务的技能。

与传统基于知识的方法相比,机器学习有可能突破人类现有知识的上限,发现人类尚未察觉的新规律、新方案,甚至展现出"超人"般的智能。

如今,人工智能展现出的强大能力------包括人们常谈论的AI 威胁,很大程度上源于机器学习:只有通过自主学习的机器,才有可能超越其创造者,具备难以预料的强大能力。

样例:区分水果

目标:对苹果和桔子进行分类, 将这一目标表示为数学形式,即希望分类正确率越高越好,或错误率越低越好。

知识:例如,"又大又红的更可能是苹果,而较小且颜色偏橙黄色的是桔子"。

模型:构建一个简单模型,如 Y=a × 颜色 + b × 大小,其中 a 和 b 为待学习的参数。

数据:收集苹果和桔子的样本,并分别标记(例如,苹果标记为 T=1,桔子标记为 T=0)。算法:通过调整 a 和 b 的值,使得预测值 Y 尽可能接近标记 T。

完成学习后,就得到了一个能够对苹果和桔子进行分类的模型。

图中的蓝色直线代表模型对应的分类边界,上方为苹果,下方为桔子。对于新样本,只需判断其位于分类边界的哪一侧,即可确定其归属。

知识卡片

机器学习是利用恰当的算法,从数据中获得经验,对基于知识设计的初始模型进行改进,从而更有效地完成任务目标的方法。

机器学习的主要成份包括:

知识: 提供大框架、设计准则、初始模型结构。例如,图像中物体的类别具有空间不变性

模型: 是知识累积的场所。例如,图像识别所用的卷积神经网络

数据: 是学习的粮食,是知识源。例如,大量带标签的图像数据集。

目标: 是学习的方向,定义了系统要优化的指标。例如,最小化图像分类错误率

算法: 是学习的具体步骤。例如,反向传播算法

相关推荐
qq74223498417 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
式51617 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
yiersansiwu123d1 天前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1581 天前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v1 天前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手1 天前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛111 天前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1481 天前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC1 天前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能
火星资讯1 天前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能