flink使用StatementSet降低资源浪费

背景

项目中有很多ods层(mysql 通过cannal)kafka,需要对这些ods kakfa做一些etl操作后写入下一层的kafka(dwd层)。

一开始采用的是executeSql方式来执行每个ods→dwd层操作,即类似:

复制代码
 def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env)
    val configuration: Configuration = tableEnv.getConfig.getConfiguration
 
    tableEnv.createTemporarySystemFunction("etl_handle", classOf[ETLFunction])
 
    // source/sink ddl
    tableEnv.executeSql(CREATE_DB_DDL)
    tableEnv.executeSql(SOURCE_KAFKA_ODS_TABLE1)
    tableEnv.executeSql(SINK_KAFKA_DWD_TABLE1)
    tableEnv.executeSql(SOURCE_KAFKA_ODS_TABLE2)
    tableEnv.executeSql(SINK_KAFKA_DWD_TABLE2)
    ....
 
    // insert dml,在insert语句中调用etl_handle进行预处理和写入
    tableEnv.executeSql(INSERT_DWD_TABLE1)
    tableEnv.executeSql(INSERT_DWD_TABLE2)
    ... 
}

当有多个ods->dwd操作放在同一个flink作业中时,发现这种方式会导致每次insert操作都是单独的DAG,非常消耗资源,特别是这些处理都是比较轻量级的,最好是能融合在同一个DAG中共享资源。

解决方案

查看flink文档:INSERT 语句 | Apache Flink

因此,可以采用statementset的方式,将不同insert sql进行分组执行,每组的insert sql会先被缓存到 StatementSet 中,并在StatementSet.execute() 方法被调用时,同一组的 insert sql(sink) 会被优化成一张DAG共用taskmanager,减少资源浪费,即类似:

复制代码
def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env)
    val configuration: Configuration = tableEnv.getConfig.getConfiguration
 
    tableEnv.createTemporarySystemFunction("etl_handle", classOf[ETLFunction])
 
    // source/sink ddl
    tableEnv.executeSql(CREATE_DB_DDL)
    tableEnv.executeSql(SOURCE_KAFKA_ODS_TABLE1)
    tableEnv.executeSql(SINK_KAFKA_DWD_TABLE1)
    tableEnv.executeSql(SOURCE_KAFKA_ODS_TABLE2)
    tableEnv.executeSql(SINK_KAFKA_DWD_TABLE2)
    ....
 

     // insert dml
    tableEnv.createStatementSet()
      .addInsertSql(INSERT_DWD_TABLE1)
      .addInsertSql(INSERT_DWD_TABLE2)
      .addInsertSql(INSERT_DWD_TABLE3)
      .execute()
 
 
    tableEnv.createStatementSet()
      .addInsertSql(INSERT_DWD_TABLE4)
      .addInsertSql(INSERT_DWD_TABLE5)
      .addInsertSql(INSERT_DWD_TABLE6)
      .execute()
}

其他

如果是纯flink sql而不用data stream api,也是可以达到同样的效果的。

相关推荐
小五传输23 分钟前
隔离网闸的作用是什么?新型网闸如何构筑“数字护城河”?
大数据·运维·安全
jkyy201439 分钟前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
蚁巡信息巡查系统1 小时前
政府网站与政务新媒体检查指标抽查通报如何面对
大数据·内容运营
视界先声1 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化
百***24372 小时前
GPT5.1 vs Claude-Opus-4.5 全维度对比及快速接入实战
大数据·人工智能·gpt
Hello.Reader2 小时前
Flink SQL CREATE 语句从建表到 CTAS/RTAS,一次讲清
sql·flink·linq
AI营销前沿2 小时前
私域AI首倡者韩剑,原圈科技领航AI营销
大数据·人工智能
Percent_bigdata3 小时前
数据治理平台选型解析:AI大模型与智能体如何重塑企业数字基座
大数据·人工智能
hg01183 小时前
广西对外农业投资规模稳增 民营企业成主力军
大数据
雪兽软件3 小时前
“大数据”能提供什么帮助?
大数据