《昇思25天学习打卡营第20天 | 昇思MindSporeGAN图像生成》

20天

本节学习了GAN图像生成。

GAN(生成式对抗网络)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

主要由两个不同的模型共同组成------生成器(Generative Model)和判别器(Discriminative Model):生成器的任务是生成看起来像训练图像的"假"图像;判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。

步骤:

1.数据集

1.1数据集下载

1.2数据加载

1.3数据集可视化

1.4隐码构造

2.模型构建

2.1生成器

2.2判别器

2.3损失函数和优化器

3.模型训练

4.模型推理

相关推荐
舒一笑1 天前
TorchV企业级AI知识引擎的三大功能支柱:从构建到运营的技术解析
人工智能
掘金酱1 天前
🎉 2025年8月金石计划开奖公示
前端·人工智能·后端
鹏多多1 天前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能
aneasystone本尊1 天前
盘点 Chat2Graph 中的专家和工具
人工智能
Baihai_IDP1 天前
AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究
人工智能·面试·llm
大模型真好玩1 天前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek
黎燃1 天前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊1 天前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠2 天前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶2 天前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc