《昇思25天学习打卡营第20天 | 昇思MindSporeGAN图像生成》

20天

本节学习了GAN图像生成。

GAN(生成式对抗网络)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

主要由两个不同的模型共同组成------生成器(Generative Model)和判别器(Discriminative Model):生成器的任务是生成看起来像训练图像的"假"图像;判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。

步骤:

1.数据集

1.1数据集下载

1.2数据加载

1.3数据集可视化

1.4隐码构造

2.模型构建

2.1生成器

2.2判别器

2.3损失函数和优化器

3.模型训练

4.模型推理

相关推荐
Kakaxiii24 分钟前
【2025.8 npj】图检索增强的大型语言模型用于面部表型相关的罕见遗传疾病
人工智能·语言模型·自然语言处理
程序员小嬛42 分钟前
(TETCI 2024) 从 U-Net 到 Transformer:即插即用注意力模块解析
人工智能·深度学习·机器学习·transformer
SEO_juper1 小时前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_802 小时前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
Gorgous—l2 小时前
数据结构算法学习:LeetCode热题100-动态规划篇(下)(单词拆分、最长递增子序列、乘积最大子数组、分割等和子集、最长有效括号)
数据结构·学习·算法
人工智能AI技术2 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887873 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通3 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu3 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯3 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能