昇思25天学习打卡营第8天|保存与加载

当模型训练好以后,就可以用来预测了。后续我们在其他端部署的时候不需要再次训练,直接使用训练好的模型进行推理就可以了。

在保存和加载的时候我们都需要传入模型。保存的API是save_checkpoint(model,path), 对应的加载的API是 load_checkpoint(model,path)

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR

使用静态图加速

前面提到过,mindspore有两种运行模式。动态图和静态图。

动态图类似于debug模式,静态图类似于release模式。

可以使用如下代码配置为静态图模式,来获得更快的训练速度。

python 复制代码
import mindspore as ms
ms.set_context(mode=ms.GRAPH_MODE) 

也可以使用@ms.hit装饰器,配置为静态图模式

相关推荐
有Li2 分钟前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
新加坡内哥谈技术22 分钟前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
风尚云网27 分钟前
风尚云网前端学习:一个简易前端新手友好的HTML5页面布局与样式设计
前端·css·学习·html·html5·风尚云网
GOTXX31 分钟前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董35 分钟前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
CV学术叫叫兽1 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
WeeJot嵌入式1 小时前
卷积神经网络:深度学习中的图像识别利器
人工智能
脆皮泡泡1 小时前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥1 小时前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银2 小时前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能